Improved catalytic performance and resistance to SO_2 over V_2O_5 - WO_3 / TiO_2 catalyst physically mixed with Fe_2O_3 for low-temperature NH_3 -SCR

<u>강태훈</u>, 김도희[†] 서울대학교 (dohkim@snu.ac.kr[†])

 NO_x emitted from stationary and mobile combustion sources contributes to a number of environmental problems. It has been reported that commercial vanadium-based catalysts are suitable for reducing NO_x . However, there are several issues when those catalysts were applied to diesel engine-based vessel. The temperature of the flue gas from vessel engine is less than 300 °C. In addition, SO_2 come from oxidation of sulfur species in diesel fuel can deactivate catalysts. Many researchers have focused on modifying vanadium-based catalysts in order to meet the operation conditions for vessel. To overcome this problem, a number of eco-friendly transition metal oxides. Among them, Fe_2O_3 can be the most suitable oxide because of its outstanding textural properties and price competitiveness. In this work, a series of V_2O_5 - V_2O_7 -