Reduction of NO by NH_3 and Oxidation of Elemental Mercury over Supported V_2O_5 Catalysts

<u>양기혁</u>, 응웬 티 프엉 타오, 김문현[†] 대구대학교 (moonkim@daegu.ac.kr[†])

We have studied supported V_2O_5 -based catalysts with different vanadate structures to simultaneously conduct selective reduction of NO by NH $_3$ and oxidation of gas-phase mercury. The catalysts were prepared by a wet impregnation technique using different supports, such as anatase- and rutile-type TiO_2 , SiO_2 , and TiO_2 - SiO_2 . ^{51}V NMR measurements disclosed that tetrahedral and octahedral coordination environments of VO_x depend not only on the support but also on VO_x amount. This was consistent with Raman spectra for the supported V_2O_5 -based catalysts. These catalytic activities for the NO reduction with NH $_3$ strongly vary with the support, and this observation could be explained by an amount of and a thermal stability of NH $_3$ adsorbed on each sample. The extent of the oxidation of elemental mercury vapor at chosen temperatures was associated with the VO_x structures.