Composite membranes for CO₂ separation

<u>강상욱</u>[†] 상명대학교 화학에너지공학과 (swkang@smu.ac.kr[†])

 ${\rm CrO_3}$ particles were synthesized via a thermal reaction at 85 °C using the ionic liquid. Poly(ethylene oxide) (PEO) composite membrane was prepared for ${\rm CO_2/N_2}$ separation with ${\rm CrO_3}$ particles and BMIM-BF₄. It was expected that the ${\rm CrO_3}$ particles could enhance the solubility of ${\rm CO_2}$ gas molecules. Furthermore, free imidazolium ions of BMIM-BF₄ played a role as agents for enhancing ${\rm CO_2}$ transport. The permeance and selectivity of a PEO membrane without ${\rm CrO_3}$ particles were 11.0 gas permeance units (GPU) and 6.5, respectively, while the ${\rm CO_2}$ permeance of the composite membrane containing ${\rm CrO_3}$ was 144 GPU with selectivity of 30. These results were attributable to the fabricated ${\rm CrO_3}$ particles to improve the solubility of ${\rm CO_2}$, leading to high efficiency in ${\rm CO_2/N_2}$ separation. Thus, the permeance and selectivity increased due to the synergistic effect of the increased ${\rm CO_2}$ solubility by chromate esters generated from ${\rm CrO_3}$ and the barrier effect on ${\rm N_2}$ molecules by particles.