Preparation of perovskite solar cells by applying heterostructures based on TiO_2 nanorod

<u>Nguyen Hai Minh</u>, 김교선[†] 강원대학교 (kkyoseon@kangwon.ac.kr[†])

 TO_2 nanorod (TNR) thin film has been considered as an excellent electron transport layer (ETL) which can replace the conventional nanoparticle layer in perovskite solar cells (PSCs). In this work, to enhance the efficiency of PSCs based on TNRs, TiO_2 heterostructure thin films including rutile TNRs and anatase TiO_2 nanoparticles on FTO glass are fabricated by the hydrothermal method and are applied as ETLs in MAPbI₃-based PSCs. A device based on TNRs and commercial TiO_2 nanoparticles (P25) is also prepared and is analyzed for comparison. The efficiency of MAPbI₃-based PSCs based on TiO₂ heterostructures ETL is much higher than that of cells with pure TNRs as ETL. The enhanced performance is attributed to the larger surface area, the excellent capability of carrier extraction, the support of light scattering, and the defect passivation.