Enhanced CO_2/N_2 separation performance of polyimide-based mixed-matrix membranes with functionalized porous organic fillers

A novel porous polymer (denoted as PBP) was synthesized via Friedel-Crafts alkylation. Subsequently, post-synthetic functionalization with the use of sulfonic and amine groups was performed on PBP to improve the overall CO_2 adsorption. These developed porous materials were incorporated into in-house polyimide to obtain mixed-matrix membranes (MMMs) for CO_2/N_2 separation process. It was observed that the incorporation of these functional groups was feasible to improve CO_2 adsorption due to the presence of strong interaction between CO_2 and the selected functional groups. Gas permeation results of the MMMs demonstrated that CO_2 separation performance can be improved substantially with the incorporation of porous fillers. On the other hand, functionalized porous fillers were feasible to tune CO_2/N_2 separation performance towards a favorable direction. In particular, PBP-ment yielded the greatest gas separation performance among all selected porous fillers, resulting in an excellent performance beyond the Robeson upper bound limit for CO_2/N_2 separation.