Thermodynamic and kinetic formation behaviors of $CO_2 + N_2$ hydrates in saline water and their significance for CO_2 separation and sequestration

<u>목정훈</u>, 김성우¹, 최원중¹, 이종혁¹, 서용원^{1,†} UNIST, ¹unist (ywseo@unist.ac.kr[†])

Geological sequestration of CO_2 is considered as a promising carbon storage option. When flue gas is injected into natural gas hydrate layer, both CO_2 sequestration and natural gas production can be achieved simultaneously through guest replacement. During the flue gas injection, mixed gas hydrates can be additionally formed with residual water in marine sediments. In this study, thermodynamic and kinetic formation behaviors of $CO_2 + N_2$ hydrates in NaCl solution were investigated to see the effect of NaCl on the $CO_2 + N_2$ hydrate formation. In NaCl solution, hydrate equilibrium conditions were shifted to harsher regions. In NaCl 3.5wt% solution, the hydrate conversion was decreased, but the CO_2 selectivity in the hydrate phase was increased. The time-dependent formation behavior of $CO_2 + N_2$ hydrates was observed via in-situ Raman spectroscopy. The high CO_2 selectivity in the hydrate phase was confirmed at the early stage of the hydrate growth in pure water, and this tendency was more pronounced in NaCl solution. The results provide valuable insights into the formation behavior of $CO_2 + N_2$ hydrates in real marine sediment conditions