Optimizing the Selenization Temperature for Rapid Thermal Processing of $\mathrm{Sb}_2\mathrm{Se}_3$ Absorbers

<u>바수데바레디</u>, Sreedevi Gedi, 알하마디 살레, 노지현, 세티야완 이그나티우스 안드레, 김우 경[†] 영남대학교

Antimony selenide (Sb_2Se_3) is a promising absorbing material for solar cells. It has attracted intense interest by researchers worldwide because of its suitable bandgap (1.1-1.3 eV), high absorption coefficient, and good carrier mobility. In the present work, metallic antimony (Sb) layers were deposited using DC sputtering, followed by the deposition of a 1 µm thick selenium (Se) layer on top of the Sb layers. Finally, the bilayers were selenized at different temperatures $(200-500^{\circ}\text{C})$ in a rapid thermal process (RTP) system to get Sb_2Se_3 absorbers. The XRD patterns revealed that the

films selenized at a temperature of 400° C showed good crystallinity with (221) as preferred orientations related to the orthorhombic crystal structure, respectively. The Raman scattering spectra showed the characteristics modes of Sb₂Se₃ at 188, 210, and 253 cm⁻¹. The SEM, optical, and

electrical studies confirmed that selenization temperature of 400° C showed a uniform and smooth surface with a band gap of 1.2 eV and p-type conductivity. Thus, our work established decisively that the generated Sb₂Se₃ thin films were acceptable for use in thin film solar cells.