Hydrogen Production by Dry Reforming of Methane Ru Modified Ni Based Catalysts Supported on SiC

<u>양유정</u>^{1,2}, 송현태^{1,3}, 박홍란¹, 김현동^{1,2}, 홍태호¹, 이관영², 문동주^{1,2,†}

¹한국과학기술연구원; ²고려대학교; ³KIST School (UST)

(dimoon@kist.re.kr[†])

Dry reforming (DR) of methane is an eco-friendly technology that mainly uses greenhouse gases such as CH_4 and CO_2 that produce syngas. However, N_1 based catalyst is easily deactivated by sintering and carbon deposition under the DR reaction. In this research, we aimed to develop to Ru modified N_1 -based catalyst supported on SiC, providing high catalytic activity and coke resistance under DR reaction. Ru modified N_1 -based catalyst supported on SiC was prepared by wet impregnation method. The catalyst was characterized by N_2 physi-sorption, H_2 -TPR, XRD and XRF techniques. The catalytic performance was carried out the fixed bed reactor under 650~850°C, 1 bar and GHSV of 50,000 h^{-1} . It was found that Ru- N_1 /SiC catalyst showed higher catalytic performance than non-bimetallic catalyst.