Fe_2O_3 , V_2O_5 -supported High Surface Area TiO_2 SCR Catalyst for Natural Gas Thermal Power Plants

<u>원영섭</u>, 김문현[†] 대구대학교 환경공학과 대기오염실험실 (moonkim@daegu.ac.kr[†])

In recent times V_2O_5 -based SCR catalysts is widely used in catalytic deNO_X processes in thermal power plants including natural gas plants, due to It had proper operating temperature range, remarkable efficiency, and strong durability. And then tungsten or molybdenum used as promoter components. But It is relatively high-priced, so It required cheaper alternative that doesn't reduce catalytic performance sharply. Iron is low-priced than tungsten and molybdenum and in SCR reaction it has depression of N₂O formation characteristic. So, it is considered as good alternative. In this study, we synthesize V_2O_5 -based, Fe_2O_3 -introduced new catalyst prepared by wet impregnation method using different supports. It shows It is possible for new catalyst to get cheaper than existing ones and to keep a catalytic performance reasonably. We analyze its surface characteristics and catalytic activities utilizing BET, XRD, NH₃-TPD, FT-IR method.