Operational mode switching of chlor-alkali electrolysis: A novel strategy for demand side management in the chlorine industry

<u>노고산</u>^{1,2,†}, Luisa Carola Brée², Karen Perrey³, Andreas Bulan³, Alexander Mitsos^{2,4} ¹응용화학공학과, 충남대학교; ²AVT.SVT, RWTH Aachen University; ³Covestro Deutschland AG; ⁴JARA-ENERGY (ksroh@cnu.ac.kr[†])

Flexible operation of switchable chlor–alkali electrolysis (CAE) is a novel strategy for demand side management in the chlorine industry. A bifunctional electrode that can replace uni–functional electrodes allows for adjusting the plant operation to fluctuations in electricity prices by switching between two modes, namely H_2 mode and O_2 mode. Such a flexible operation enables improving the plant economics as well as contributing to power grid stabilization. We solve a mixed–integer nonlinear program (MINLP) to determine optimal operation and (if necessary) oversizing of the switchable chlor–alkali plant. We found that the switchable operation can reduce a large amount of electricity and operating costs while the high investment cost for retrofitting the plant for employing switchability could prolong the payout time.