Exsolved Fe nanoparticles on Ruddlesden–Popper oxide for CO₂ electrolysis cathode in solid oxide electrolysis cell

<u>최준일,</u> 박성민, 김지훈, 강송규, 김원배[†] 포항공과대학교 (kimwb@postech.ac.kr[†])

Although Solid oxide electrolysis cell (SOEC) is an efficient system for CO_2 electrolysis, conventional cathode material, Ni/YSZ, has suffered from degradation problem caused by particle agglomeration, carbon deposition, etc. In this study, *in situ* exsolution with phase transition was used to prepare active metal nanoparticles socketed on the oxide surface and Ruddlesden-Popper support at relatively low annealing temperature. The cathode catalyst, Fe-R.P.LSMF, was prepared by in situ annealing of LSMF in flowing H₂ at operation condition. The SOEC button cell with the configuration of LSMF-GDC|LSGM|LSCF-GDC was used for CO_2 electrolysis with pre-reduction in H₂ for cathode side before the CO_2 electrolysis test. The cell shows high current density value at 1.5 V and 850 °C with a almost 100% Faraday efficiency. In addition, the cathode material showed stable long-term performance over the 100 h continuous operation. Therefore, the Fe-R.P.LSMF highly promising candidate with high performance and stability for CO_2 electrolysis cathode in SOEC.