Phase Segregation of Binary and Ternary Solution for the P(PA-co-MMA) + Compressed Solvents and Copolymer Preparation by Supercritical Dispersion Polymerization

변헌수[†] 전남대학교 (hsbyun@jnu.ac.kr[†])

Copolymers of poly(pentyl acrylate-co-methyl methacrylate) [P(PA-co-MMA)] were manufactured by using carbon dioxide with dispersion polymerization. The thermophysical characteristics of P(PA-co-MMA) were researched with three kinds ratios (1:20, 1:25, 1:30) of PA vs MMA and AIBN concentrations of (1.0, 2.0, 4.0) wt%. Experimental data at pressures of $p \le 206$ MPa and $T \le 434$ K was investigated for binary and ternary solution of P(PA-co-MMA) under compressed CO₂, CHClF₂, CHF₃ and CH₂F₂. Experiments are carried out to get phase segregation for the binary solution of P(PA-co-MMA) [1:25, 1.0, 2.0 and 4.0 wt% AIBN] + compressed fluorine solvents (CHF₃, CHClF₂, CH₂F₂) solutions at a pressure of p < 168 MPa and at $(333 \le T \le 434)$ K. It is revealed that the CH₂F₂ + P(PA-co-MMA) solution is seen as the UCST type with minus curves, while the CHClF₂ + P(PA-co-MMA) and CHF₃ + P(PA-co-MMA) solutions appear in the LCST region. Phase equilibria curves for P(PA-co-MMA) [M_w =198,000, 249,000, 258,000] + compressed (CHF₃, CHClF₂, CH₂F₂) solutions depict a minus curves for CH₂F₂ + P(PA-co-MMA) and a plus curves for the CHF₃ + P(PA-co-MMA) and CHClF₂ + P(PA-co-MMA) solutions at $T \le 434$ K and at $p \le 168$ MPa.