Rational engineering local structures of single-atom catalysts for selective CO₂ electroreduction

<u>이예찬</u>, Ying Wang, 박병준, 한정우[†] 포항공과대학교 (jwhan@postech.ac.kr[†])

 CO_2 electrochemical reduction reaction (CO_2RR) has attracted significant attention for converting CO_2 into value-added feedstock under ambient conditions as the concentration of atmospheric CO_2 continue to increase. Recently, nitrogen doped carbon-based materials including transition metals (M–N–C) have emerged as promising alternatives for CO_2RR .

Herein, we synthesized metal nitrogen-doped carbon catalysts (M–N–C, M = Fe, Co, and Ni) using ZIF-8 as a metal-organic framework. The transition metals (Fe, Co, and Ni) were selected by a systematic computational screening study of 23 kinds of M–N–C catalysts based on activity, selectivity, and stability. As for Fe–N–C catalyst, the FE_{co} reached a maximum of 90 % at low overpotential region. Co–N–C and Ni–N–C catalysts obtained their maximum FE_{co} of 50 % and 80 % respectively at intermediate overpotential region. Interestingly, when Fe–N–C and Ni–N–C were annealed under mixed gas atmosphere (H₂ and Ar), FE_{co} further increased to 97 % and 98 % respectively.