Effect of silver doping on properties of chemical bath-deposited In₂S₃ for different solar energy applications

<u>문보경,</u> 알하마디 살레¹, Abdelrahman M Rabie¹, Mostafa Saad Sayed¹, 심재진¹, 김우경^{1,†} 영남대학교; ¹영남대 (wkim@ynu.ac.kr[†])

The effect of Silver (Ag) doping on In_2S_3 nanoparticles properties and the potential of Agdoped In_2S_3 in different solar energy applications have been investigated. In this study, the pure In_2S_3 and Ag-doped In_2S_3 were prepared using chemical solution process. The XRD results showed that's all the prepared nanoparticles has a polycrystalline cubic crystal structure. The XPS analysis results showed that all the prepared nanoparticles have an identical structure of In_2S_3 . The photocatalytic ability of the pure In_2S_3 and Ag-doped In_2S_3 nanoparticles were investigated systematically and compared for the decomposition of methylene blue dye (MB), rhodamine b (RhB) and tetracycline (TC) under visible light illumination. Overall, the Ag-doped In_2S_3 exhibited better performance than pure In_2S_3 of visible-light photocatalytic degradation of TC, RhB and MB with higher removal efficiency. The performance of Ag-doped In_2S_3 in hydrogen production by photoelectrochemical (PEC) water splitting was studied. The results showed the Agdoped In_2S_3 has more than three times higher STH efficiency than pure In_2S_3 .