$\rm CO_2$ hydrogenation to methanol: investigating the role of ZnO loaded on different polymorphs of $\rm ZrO_2$

<u>Faisal Zafar</u>, 배종욱[†] 성균관대학교 (finejw@skku.edu[†])

Methanol synthesis via CO_2 hydrogenation is an important part of the strategy for generating clean energy as we attempt to reduce our dependency on fossil fuels. Herein, we have synthesized different polymorphs of ZrO_2 i.e. amorphous, monoclinic, and tetragonal by coprecipitation method, then impregnated 10 wt% of ZnO and evaluated their activity for methanol synthesis. The surface interaction of CO_2 , H_2 , and reduction behavior of the catalysts vary remarkably with the phases of ZrO_2 due to the presence of different strong Lewis acidic Zr^{4+} cation and strong Lewis basic O^{2-} anion. The structure-activity

strong Lewis acidic Zr^{2} cation and strong Lewis basic O^{2} anion. The structure-activity relationship was developed with in-depth characterization and catalytic experiments for CO_{2} hydrogenation to methanol, which revealed a strong dependence of CO_{2} conversion and methanol selectivity on the phase of the ZrO_{2} .