Characterization and De-NO_X properties of V₂O₅-WO₃/TiO₂ SCR catalysts synthesized by different methods of loading vanadium.

<u>이재연</u>^{1,2}, 김대성¹, 남산², 전명표^{1,†} ¹한국세라믹기술원; ²고려대학교 (myoungpyo@kicet.re.kr[†])

 V_2O_5 –WO $_3$ /TiO $_2$ catalysts with high De-NO $_X$ efficiency were prepared for SCR, which serves to convert NO $_X$ into N $_2$ and H $_2$ O, where the loading of vanadium was specifically carried out by two different synthetic methods. In advance, anatase TiO $_2$ support was prepared by the sol-gel method, then AMV and AMT precursors were impregnated into the catalyst support. Finally, the residues were calcined at 500°C to prepare catalysts loaded with active materials WO $_3$ and V $_2$ O $_5$. As a result of observing the size and microstructure of the catalyst with FE-SEM, the crystallite size was estimated to be about 30nm. XRD analysis confirmed that the V $_2$ O $_5$ and WO $_3$ catalysts had little effect on the anatase phase of the TiO $_2$ support. And the specific surface area was measured through N $_2$ adsorption. It is interesting that the temperature range of presenting the maximum De-NO $_3$ efficiency is different between the catalysts synthesized by the different methods, where the highest De-NO $_3$ efficiency was observed above 300°C for one method and below 300°C for the other.