초록 |
Molybdenum sulfide (MoS2) displays a modest hydrogen evolution reaction (HER) activity in acidic media because the active sites are limited to a small number of edge sites with broader basal planes remaining mostly inert. Here, we report that the MoS2 basal planes could be activated by growing nickel phosphide (Ni2P) nanoparticles on them. A Ni2P/MoS2 heterostructure is constructed via in situ phosphidation of an indigenously synthesized NiMoS4 salt as a single precursor to form a widely cross-doped and chemically connected heterostructure. The conductivity and stability of the Ni2P/MoS2 are further enhanced by hybridization with conductive N-doped carbon supports. As a result, the Ni2P/MoS2/N:RGO or Ni2P/MoS2/N:CNT electrocatalyst displays Pt-like activity, outperforming the best HER electrocatalyst, Pt/C, in a more meaningful high current density region making them a promising candidate for practical water electrolysis applications. Since nonprecious metal catalysts showing Pt-like HER performance in acidic media are rare, the Ni2P/MoS2 heterostructure is a promising candidate for practical hydrogen production. |