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2.8 Nonlinear Equations

General nonlinear equation
R(z) =0

That is
R:izeR'"—=0eR"

In a scalar notation

Ry(z1,x9,...,2,) = 0

RQ(ZL’l,IQ, c. ,xn) =0

R.(z1,29,...,2,) = 0

Characteristics :
1. Cannot be usually solved in a finite number of operations.
— require iteration

2. Require an initial guess. Ability of scheme to converge to solution

depends on the guess.

3. Only guarantees convergence in a limited number of cases.
Methods :

1. Sequential methods: Fixed set of operations leading to a sequence of

{2®} 0 — 2"

2. Nonsequential method: Involve random selection

Sequential methods :

Each is characterized by an iteration formula

2+ x84 \®) pk)
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where

Q(k) . correction vector

M) : relaxation parameter

e Trade-off: Work involved in finding D vs. accuracy of solution

e Fixed point iteration:
Let A\=1and D = R, then

2 — p® 4 R(z®)

This iteration defines a sequence {g(k)} — x*, where x* is a solution of
R(z*) =0 and is a fixed point.

Many ways to write a fixed point algorithm.

For example, there are several algorithms for

Rx)=2"-Tr—6=0

7 7
5 23 —Tr —6 0
— 12
Ly _ Te +6
- 2
(k)

3 —Tr —6

3 —— =0
— (322 =17)
3
LD _ 227 1 6
3z — 7

This algorithm is Newton’s method.
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Apply three algorithms above for R(z) = 2° — 7o — 6 =0
and iterate until |z — 2| < 107,
The exact solution is x = —1,—2,3
from R(z) =23 -T2z —6 = (z+1)(z +2)(z — 3) = 0.

Result of iteration
Initial guess Algorithm
(1) (2) (3)
0 =—-11 n=12 n = 10 n=3
(12 = —1.00000 | (19 = —2.00000 | 2 = —1.00000
20 =_-99 n==~6 n=29 n=4
12(0)] > 106 ¥ = —2.00000 | 2z = —2.00000

The different behaviour is explained by Contraction Mapping Theorm.

Contraction Mapping Theorem .

1. Let ¢(z) be a continuous set of functions that map a closed and
bounded region R € R into itself. When 2 = (21, 29,...,2,)7 € R, it
follows that

| ¢1(l’1,l‘2,...,1’n) ]
9($) _ ¢2($1,ZE2‘, ce ,fl?n) cR
L gbn(ffl,fza---,ffn) |

Example : For ¢(z) = 2+ R(z) trying to solve R(z) = 0, fixed point
algorithm is written as

Then, the solution satisfies z = ¢(z).

2. Assume that there exists a positive constant L < 1, such that
16(a) — o(b)|| < Llla — b]| Va,b € R
Then in R there is a unique solution of the equation

z = P(z)
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and the sequence {z(*)} defined by

2EHD) — Q@(’f))

converges to this solution for any initial approxiamtion z(®) € R. Here

L is called a Lipschitz constant.

Note that the contraction mapping theorem is a sufficient but not necessary

condition for convergence.
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2.9 Iterative Solution of Linear Equations

For Az = b, the residual equation is

R(z)=Az—-b=0
and
olz)=Azx—-b+z
Then,
r = ¢(z)
= Az-b+z
= A+Dz-b
= Mz+yg

Fixed Point Iteration is

LR+

()
z®) g

|
= =

Here M plays a role of J. The condition for convergence is L = || M]| < 1.

Splitting of A .
For Az = b, A is splitted as

[s=
[
@

where B is non-singular. Then,

=b

]

1%

z-C

and

[

1
=
[}
18
+
s
o~
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1. Jacobi Method

A=D+L+U
D = diagonal element of A
a1
. a22 ¢
) Qnn

L+L+U)z = b
Dr = —(L+Uz+b
z = D L+U)z+D7"b

_Z] 1 azg +b
gD = i L i=1,2,....N
Qi

2. Gauss-Seidel Method

(D+L)z™Y = —Uz®™ =b
Do = L™ — U 2™ 4 b
(k+1) _ — 3;11 aijxg‘kﬂ) + - in aijxﬁk) + bi

|
<
-~
I
\‘}—‘
~

Sequentially updates as information is available.

When both converges, GS needs fewer iteration than Jacobi.

39
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3. Successive Over-relaxation (SOR)

Dz = (1-w)

Rate of convergence :
For 1-D problem

g* ) = p(x®) = 20 1 R(2W) (2.5)
Let

v = ola”) (26)
Subtracting Eq. (2.5) from Eq. (2.6) gives

v =2t = g(a") — g(a®)

Then,

lz* = 2™ = lg(2*) — ¢(=®)]

< Llja* —2®
where L = max |¢/(£)]. And,

eh1) < [ o)

shows linear convergence.



Num Meth Chem Engrs, Prof. Do Hyun Kim, KAIST

Order of convergence :
When
|E(k+1)|

o constant

p is an order of convergence.

e Linear convergence
le®+ 0 < L™
where ¢®) = z* — z (%),
e Higher order convergence
le®+ D) < L™ P
Taylor series about the exact solution
' = ¢(z")
kD) — qg(x(k))

> 5) 46 o) + T @0 gy

Subtracting Eq. (2.7) from Eq. (2.8) gives

1 (%
SC(k+1) = qﬁ’(:c*)(a:(k) o l’*) + ¢ (Qx )(.T(k) . :C*)Z 4.

Then,

$(k+1) —x*
lim ———— = ¢'(z*) when ¢'(z*) #0

) g k) — g
This is linear convergence.
As a special case, when ¢'(z*) = 0,

/ *
D) ¢"'(x )(w(k) )2

2
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And,

(k+1) _ %
: o T ok

This corresponds to quadratic convergence.

Newton’s method :

In 1-D case, we want to solve R(z) = 0. During the iteration

R(ac(k+1)) = 0

_ R(a:(k)) + R/(l,(k:Jrl) . Z'(k)) + O[<x(k+1) . IL’(k))Q]

Then,

R(z®)
D) — (k) _ (=)

RI(2®)
In this case,
_ .. R(=)
and
, B R//R
(b (‘T) - (R/)2

For z = 2*, R(z*) = 0 and ¢'(z*) = 0 if R’ # 0.
Thus, Newton’s method shows quadratic convergence.

In muliple dimension

E(l<k+1)) _ Q

42
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called Jacobian matrix. Then,

LD _ g0 5ketD)

=~ @")R(E")

and z is updated by
2D = k) 4 50+1)
Simple Newton iteration :
In this method Jacobian matrix is not updated.

Adaptive Newton method :

e Full Newton: Update J at each iteration

e Simple Newton: Never updates J

e Adaptive Newton: Update J depending on the rate of convergence
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