
Introduction To Molecular Simulation

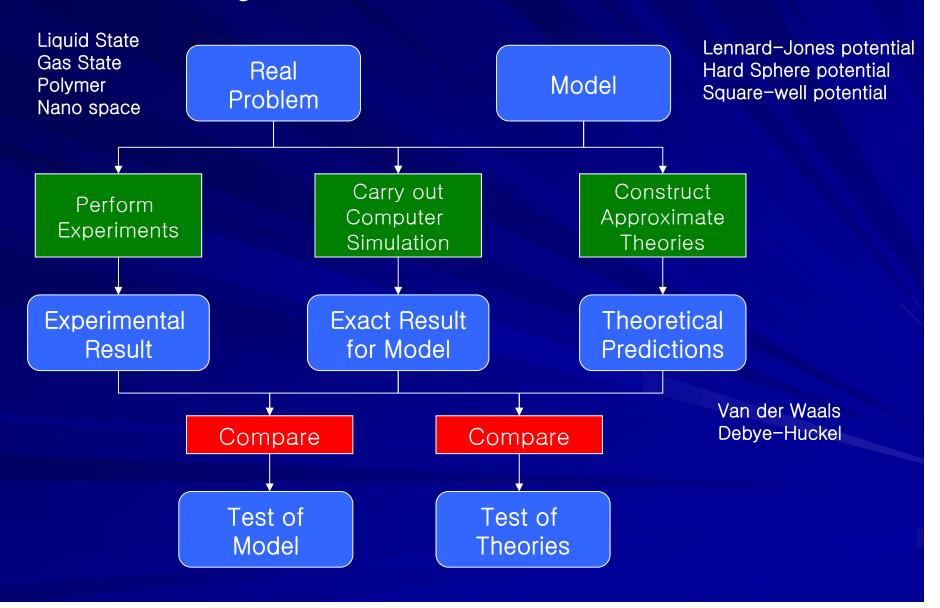
고려대 화공생명공학과 강정원

Computer Simulation ...

- Computer experiments (simulation) become a general research tool.
- Motivation of computer ...
 - Development of Nuclear Weapons
 - Code breaking

- **MANIAC, 1952**
 - Metreopolis was interested in solving broad spectrum of problems on this machine.

Metropolis Monte-Carlo Simulation Method


Method before computer simulation

- Approximate Theories
- Mechanical Simulation
 - Plastic foam balls
 - Metal bearings
 - **Tedious, laborious**
 - Quite realistic

Molecular Simulation

- A study of state of matter using computer.
 - Gas state
 - Liquid State
 - Solid State
 - Other specialized state: nano-space, structured polymers,...
- Why computer ?
 - We cannot solve many-body problems even using simple Newtonian mechanics. (What about quantum mechanics?)
 - There is no hope to get answer to many-body problem using pencil and paper....
- **■** Before computer simulation ...
 - Approximate theories
 - **Van der Waals equation for non-polar fluids**
 - **Debye-Huckel for electrolytes**

Use of Molecular Simulation

Use of Molecular Simulation

- **■** Test of model
 - Test of model potential, model structure
 - Comparison with experimental data
- **■** Test of approximate theories
 - Comparison with theoretical prediction
 - Computer-generated exact result
- Prediction of properties
 - Replacement of experimental data
 - Computer does not care about the condition....
 - **■** Simulation at 10,000 K (?)
- Discovery of new fact
 - Alder and Wainwright (1950s): predicted 1st order freezing transition for harsh short range repulsive molecules.

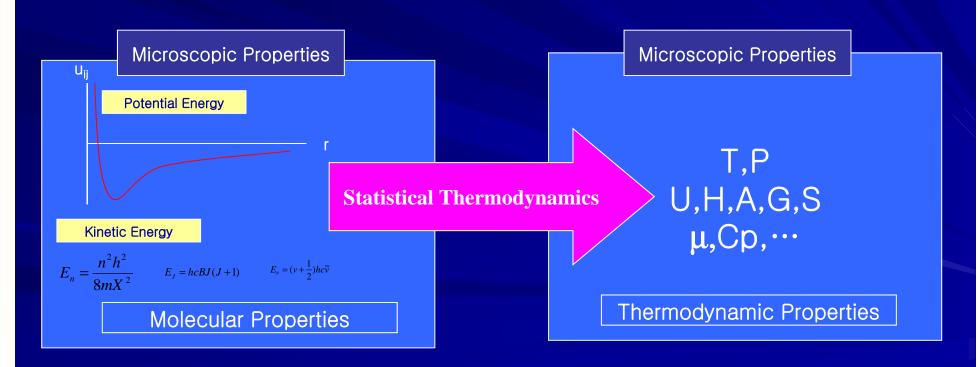
Procedure to perform molecular simulation

Statistical Computer Simulation Model Averaging Implementation Result Method Interaction Random Number Statistical Test of Model **Energy model** Generation Mechanics Random Structural Ensemble **Test of Theory** Model Walk Average Statistical **Property Prediction Treatment** Method of **New Discovery** Integration

Need to study molecular simulation...

- Computer simulations (computer experiments) become general research tool.
- Understanding the "Black box" greatly improve the efficiency of using it.
- The techniques can be applied to various field of science and engineering.
 - Polymer science
 - Nano technology
 - Biological materials
 - Special structures: Zeolites, Supercritical fluid, Aerogels,....

Recent Research Topics 2001-2003


- Molecular Simulation of Diblock copolymer films
- Adsorption of materials in a single-wall carbon nano-tube
- Zeolites
- Drug delivery devices
- Viscosity in nano spacing
- Nanoscale heat transfer
- Supercritical behavior
- Aerogels

Prerequisite for the course

- **Programming skill (FORTRAN or C/C++)**
- Statistical Mechanics
 - Will be covered shortly in 2 week lecture.
- Basic Thermodynamics

Statistical Thermodynamics

Link between microscopic properties and bulk properties

Crash course in statistical mechanics

Mechanics

Classical Mechanics

Quantum Mechanics Statistical Thermodynamics

Molecular
Partition Functions

Ensemble Averaging Method

Phase Space Integration

$$< A > = \frac{\int A(\mathbf{r}^N) \exp(-\beta U(\mathbf{r}^N)) d\mathbf{r}^N}{\int \exp(-\beta U(\mathbf{r}^N)) d\mathbf{r}^N}$$

Classical Mechanics ...

- **■** Hamiltonian : Total Energy of System
 - r : position vectors (N)
 - p: momentum vectors (N)

$$H(\mathbf{r}^{N}, \mathbf{p}^{N}) = \text{KE}(\text{kinetic energy}) + \text{PE}(\text{potential energy})$$

$$H(\mathbf{r}^{N}, \mathbf{p}^{N}) = \sum_{i} \frac{\mathbf{p}_{i}}{2m_{i}} + U(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{N})$$

Using Legendre Transformation Technique,

$$\begin{bmatrix} \frac{\partial H}{\partial \mathbf{r}_{i}} \end{bmatrix} = -\dot{\mathbf{p}}_{i}$$

$$\begin{bmatrix} \frac{\partial H}{\partial \mathbf{p}_{i}} \end{bmatrix} = \dot{\mathbf{r}}_{i}$$
Canonical Relationship
$$\begin{bmatrix} \frac{\partial H}{\partial \mathbf{p}_{i}} \end{bmatrix} = \dot{\mathbf{r}}_{i}$$
Can you solve it?

Quantum Mechanics ...

- **■** Failure of classic mechanics
 - Blackbody radiation
 - The Planck distribution
 - Heat capacities at low T
 - Atomic and molecular spectra
- Wave-particle duality
 - Waves have characteristics of particles
 - Particles have characteristics of waves

Conclusion of Quantum Mechanics

- Particles can only have discrete values of energies
- The energy values can be calculated using Schrodinger equation

$$-\sum_{i} \frac{h^2}{8\pi^2 m_i} \nabla_i^2 \Psi + U \Psi = E \Psi$$

Second order differential equation Eigen value problem: series of allowed solutions

Available energy values

Examples of solution to Schrodinger Equation

■ Translational motion of a free particle

$$\psi_k(x) = C \sin kx + D \cos kx$$

$$E_k = \frac{k^2 \hbar^2}{2m}, k = 0,1,2,3...$$

Vibrational Motion (harmonic motion)

$$E_v = (v + \frac{1}{2})\hbar\omega, \omega = \left(\frac{k}{m}\right)^{1/2}, v = 0,1,2,3...$$

Rotational motion of a linear rotor

$$E_r = hcBJ(J+1), J = 0,1,2,3...$$