‘oduction to Statistical
‘hermodyr

JdAistw




Review of Previous Lecture

> Molecular Partition Function

o Effective way of calculating average properties
(macroscopic) of a system with given quantum state.

> Molecular partition function indicates number of
possible state that are thermally available at T.




Objectives of 2n9 Lecture

> Ensemble Average Method

> Thermodynamic properties and the
Canonical Ensemble

> Link between classical and quantum
mechanics : Phase Space

> Seml classical partition function

> Very Simple example of Monte—Carlo
Simulation




Introduction

> Statistical Mechanics

Properties of bulk fluid

Properties of individual molecules (macroscopic properties)

Pressure
Internal Energy
Heat Capacity

Entropy

Viscosity

Position
Molecular geometry
Intermolecular forces




What we have learned from
porevious lecture...

Solution to Schrodinger equation (Eigen—value
problem)
« Wave function "

o Allowed energy levels : E 2

L VAp Uy = EY
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Using the molecular partition function, we can
calculate average values of property at given

QUANTUM STATE.

Quantum states are changing so rapidly that the
observed dynamic properties are actually time
average over quantum states.




-luctuation with time...

i

time
Although we know most probable distribution of energies of individual
molecules at given N and E (previous section — molecular partition

function) it is almost impossible to get time average for interacting
molecules




Thermodynamic Properties

> Entire set of possible quantum states

E,E,,E,....E...

> Thermodynamic internal energy

U =|im12 E.At,
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DItficulties

> Fluctuations are very small
> Fluctuations occur too rapidly

> We have to use alternative, abstract
approach.

> Ensemble average method




Alternative

> Proposed by Gibbs
o« ENnsemble Method

Procedure

e ENnsemble 7 : Infinite number of mental
replica of the system of interest

-
/

-

Large Reservoir (const.T)
All the ensemble members have the
SEINERNRAL

Energies can be exchanged
but molecules cannot.

Current N = 20
but N = infinity




Two postulates

> Long time average = Ensemble average at N =2 infinity

time

Ez =

> |n an ensemble , the systems of enembles are distributed
uniformly (equal probability or frequency)

« = Ergodic Hypothesis
« =2 Principle of equal a priori probability




Averaging Method

> Probability of observing particular guantum state i

> Ensemble average of a dynamic property

> Time average and ensemble average

U=lim) EAt =lim) EP
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Calculation ot Probability In
—nsemble

> Several methods are available
« Method of Undetermined multiplier




Maximization of Weig

— Most probable distributi
> Weight

1




The Boltzmann Distribution

> Task : Find the dominating configuration
for given N and total energy E.

> =2 Find Max. W which satisfies ;




Method of

Jndetermined

Multipliers

> Maximum weight , W
s> Recall the method to find min, max of a

function...

> Method of undetermined multiplier -

o Constraints should be multiplied by a constant
and added to the main variation equation.




Method of undetermined
multipliers
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Boltzmann Distribution

(Probability function for
energy distribution)




Canonical Partition Function

> Boltzmann Distribution

> Canonical Partition Function




Thermodynamic Properties and
Canonical Ensemble

Internal Energy
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Thermodynamic Properties and
Canonical Ensemble

Pressure at i state Small Adiabatic expansion of system

(o )y = RdV = Fdx
(dE,) = -F.dx=—PdV = -dw,
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Thermodynamic Properties and
Canonical Ensemble

Pressure

Pressure at
quantum state i

P=<P>=) PP

Probability
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Equation of State in Statistical Mechanics




Thermodynamic Properties and
Canonical Ensemble
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Thermodynamic Properties and
Canonical Ensemble
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The only function that links heat (path integral) and
state property is TEMPERATURE.




sSummary ot Thermodynamic
Properties in Canonical Ensemble
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H = kT((m T)v N (al N All thermodynamic properties
jl> Can be obtained from
A=-KTInQ “PARTITION FUNCTION”
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Classical Statistical Mechanics

It Is not easy to derive all the partition functions using
gquantum mechanics

Classical mechanics can be used with negligible error
when energy difference between energy levels (Ei)
are smaller thank KT.

However, vibration and electronic states cannot be
treated with classical mechanics. (The energy
spacings are order of kT)




Phase Space

> Recall Hamiltonian of Newtonian Mechanics
H(r"™,p") = KE(kinetic energy) + PE(potential energy)

> Instead of taking replica of systems (ensemble members), use
abstract ‘phase space’ compose of momentum space and

position space (6N)
> =2 Average of infinite phase space




Phase Space

T P O U




—nsemble Average

U = |im1jo’ E(M)dr = qu:N (T)E(T)dr

T T

(PN (F) Ol " j—— Fraction of Ensemble members in this range
(I" to I'+dI)

{ Using similar technigue used for
Boltzmann distribution

exp(—H / KT)dr

()l = [.[exp(~H /KT)dr




Canonical Partition Function

Phase Integral

T:j...jexp(—H /KT)dl

Canonical Partition Function

Q=cj...jexp(—H /KT)dl

Match between Quantum and Classical Mechanics

> exp(-E, /KT)
c=lime—aui——
T j j exp(—H /KT)dr

For rigorous derivation see Hill, Chap.6




Canonical Partition Function In
Classical Mechanics

1
~ NIhW

j j exp(—H / KT)dl
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Example :
Translational Partition Function for an ldeal Gas

H(r",p") = KE(kinetic energy) + PE(potential energy)

No potential energy, 3 dimensional
space.
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Semi—Classical Partition Function

The energy of a molecule is distributed in different modes
— Vibration, Rotation (Internal : depends only on T)
— Translation (External : depends on T and V)

Assumption 1

Hamiltonian operator can be separated into two parts
(internal + center of mass motion)

E E

+ Eiint _ ~ iint
)= exp( )

KT

T )D_exp(-

Q = QCM (N’V’T)Qint(N’T)




Semi—Classical Partition Function

> Internal parts are density independent
and most of the components have the
same value with ideal gases.

Qint(NuO1T) — Qint(N101T)

> For solids and polymeric molecules, this
assumption is not valid any more.




Semi—Classical Partition Function

Assumption 2

For T > 50K, classical approximation
can be used for translational part.




< P+ R+
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Configuration
Integral

1 N
Z= (ﬁj [ ] (U 1KT)drdr,...dry de,... day

For non—central forces
(orientation effect)

Q=jda)




Configurati ntegral and
Molecu Imulation

j A(r)(=U (r)/KT)dr

< A>=
j (=U (r)/KT)dr




Introduction
SIm

to Monte—Carlo

Jlation

> Monte Carlo Method : Wide range of
problem solving tool using RANDOM

NUMBERS

> Monte Carlo ? — colned after casino

e In principle any method that uses random
number to solve a problem is a Monte

Carlo Method




A Classical

Calculation of pi

Trial shots are generated
between 0 and 1 (x and y)
Compare x™2 +y "2< 1 or
not

If true, add to the number of
successful shot

Pi = 4H/N

« N : Area of Rectangle (1*1)

o« 4H : Area of ¥ circle
(pi*x1*x1%1/4)




