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Source of the lecture note. 

 J.M.Prausnitz and others, “Molecular 
Thermodynamics of Fluid Phase Equiliria”

 Atkins, “Physical Chemistry”
 Lecture Note, Prof. D.A.Kofke, University at Buffalo
 Lecture Note, R.J.Sadus, Swineburn University 



Tasks of Molecular Simulation 
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Model for 
Intermolecular Forces

Method of Integration for
Multiple vector space 

Part 1 of 
this lecture

Part 2 of 
this lecture



Intermolecular Forces

 Intermolecular forces
 Force acting between the molecules of given mixture or 

pure species

 It is essential to understand the nature of 
intermolecular forces for the study of 
molecular simulation 

 Only simple and idealized models are 
available (approximation) 

 Our understanding of intermolecular forces 
are far from complete. 



Types of intermolecular forces

 Electrostatic forces 
 Charged particles and permanent dipoles

 Induced forces
 Permanent dipole and induced dipole

 Force of attraction between nonpolar 
molecules

 Specific forces 
 Hydrogen bonding, association and complex 

formation 



Potential Energy Function and 
Intermolecular Forces 

 Potential Energy : Energy due to relative 
position to one another 

 If additional variables are required for 
potential energy function …
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1. Electrostatic Force

 Due to permanent charges (ions,…)
 Coulomb’s relation (inverse square law)

 Two point charges separated from 
distance r 

 For two charged molecules (ions) ,
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Nature of Electrostatic forces

 Dominant contribution of energy ….
 Long range nature 
 Force is inversely proportional to 

square of the distance
 Major difficulties for concentrated 

electrolyte solutions



Electrostatic forces between 
dipoles
 Dipole 

 Particles do not have net electric charge 
 Particles have two electric charges of same 

magnitude e but opposite sign. 
 Dipole moment 

 Potential Energy between two dipoles
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Energies of permanent dipole, 
quadrupoles
 Orientations of molecules are governed by two 

competing factors
 Electric field by the presence of polor molecules
 Kinetic energy  random orientation 

 Dipole-Dipole

 Dipole-Quadrupole

 Quadrupole-Quadrupole
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2. Induced Forces 

 Nonpolar molecules can be induced 
when those molecules are subjected to 
an electric field.

Ei αμ =

Polarizability

Electric Field Strength 



Mean Potential Energies of 
induced dipoles
 Permanent Dipole + Induced Dipole

 Permanent Dipole + Permanent Dipole

 Permanent Quadrupole + Permanent Quadrupole 
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3. Intermolecular Forces 
between Nonpolar Molecules

 1930, London 
 There was no adequate explanation for the forces 

between nonpolar molecules
 Instant oscillation of electrons  Distortion of electron 

arrangement was sufficient to caus temporary dipole 
moment  

 On the average, the magnitude and direction averages 
zero, but quickly varying dipoles produce an electric 
field.  induces dipoles in the surrounding molecules

 Induced dipole-induced dipole interaction



London dispersion force
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Potential energy between two nonpolar molecules are :

independent of temperature and

varies inversely as sixth power of the distance  between them .
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Repulsive force and total 
interaction
 When molecules are squeezed, electronic replusion and 

rising of eletronic kinetic energy began to dominate the 
attractive force

 The repulsive potential can be modeled by inverse-power 
law

 The total potential is the sum of two separate potential 
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General form of intermolecular 
potential curve

 Mie’s Potential

 Lennard-Jones 
Potential
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The parameters for potential models can be estimated
from variety of physical properties 
(spectroscopic and molecular-beam experiments)



Specific (Chemical) Forces

 Association : The tendency to from polymer 
 Solvation : The tendency to form complexes from 

different species 

 Hydrogen Bond and Electron Donor-Acceptor 
complexes

 The models for specific forces are not well established. 

 The most important contribution in bio-molecules 
(proteins, DNA, RNA,…) 



Simplified Potential Models for 
Molecular Simulations
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Calculation of Potential in 
Molecular Monte Carlo Simulation

 There are no contribution of kinetic energy in 
MMC simulation 
 Only “configurational” terms are calculated 
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Effect of external field

Potential between pairs of particles

Potential between particles of triplets



Using reduced units…

 Dimensionless units are used for 
computer simulation purposes
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Contribution to Potential energy

 Two-body interactions are most important term in 
the calculation

 For some cases, three body interactions may be 
important. 

 Including three body interactions imposes a very 
large increase in computation time. 

m: number of interactions 

mNt ∝



Short range and long range forces

 Short range force
 Dispersion and Replusion 

 Long range force 
 Ion-Ion and Dipole-Dipole interaction 

Interaction Type Dependence Typical E
(kJ/mol)

Comment

Ion-Ion 1/r 250
Ion-Dipole 1/r2 15
Dipole-Dipole 1/r3 2 Stationary 
Dipole-Dipole 1/r6 0.6 Rotating
London 1/r6 2



Short range and long range interactions

 Computation time-saving devices for short 
range interactions
 Periodic boundary condition
 Neighbor list

 Special methods are required for long range 
interactions. (The interaction extends past the 
length of the simulation box) 



Naïve energy calculation 
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Summation are chosen to avoid “self” interaction

Loop i = 1, N-1
Loop j = i+1,N 

Evaluate rij
Evaulate Uij

Accumulate Energy
End j Loop

End j Loop

Pseudo Code



Problems 

 Simulations are performed typically with a 
few hundred molecules arranged in a cubic 
lattice. 
 Large fraction of molecules can be expected at the 

surface rather than in the bulk. 

 Periodic Boundary Conditions (PBC) are 
used to avoid this problem 



Periodic Boundary Condition 

 Infinite Replica of the 
lattice of the cubic 
simulation box

 Molecules on any lattice 
have a mirror image 
counter part in all the 
other boxes

 Changes in one box are 
matched exactly in the 
other boxes  surface 
effects are eliminated.



Another difficulty…

 Summation over infinite array of 
periodic images 
  This problem can be overcame using 

Minimum Image Convention (MIC)



Minimum Image Convention 
(MIC)

Nearest images of colored sphere

For a given molecule, we position
the molecule at the center of a box 
with dimension identical to the 
simulation box. 

All the coordinates lie within the
range of ½ L and – ½ L 

Assume that the central molecule 
only interacts with all molecules 
whose center fall within this 
region.



Implementing PBC & MIC 

 Two Approaches
 Decision based : if statement
 Function based : rounding, truncation, modulus

BOXL2 = BOXL/2.0 
IF(RX(I).GT.BOXL2) RX(I)=RX(I)-BOXL
IF(RX(I).LT.-BOXL2) RX(I) = RX(I) + BOXL

RX(I) = RX(I) – BOXL * AINT(RX(I)/BOXL)

Decision Function

Nearest integer



Implementing PBC & MIC 

Loop i = 1, N -1
Loop j = I + 1, N 

Evaluate rij
Convert rij to its periodic image (rij’) 
if (rij’ < cutOffDistance) 

Evaluate U(rij)
Accumulate Energy 

End if
End j Loop

End i Loop 

Pseudo CODE 



Improvement due to PBC & MIC
(Compared with naïve calculation)

 Accumulated energies are calculated for the 
periodic separation distance. 

 Only molecules within cut-off distance 
contribute to the calculated energy. 

 Caution : cut-off distance should be smaller 
than the size of the simulation box 
Violation to MIC 

 Calculated potential  Truncated potential 



Long range correction to PCB 

 Adding long range correction… 
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For NVT ensemble, density and no. of particles are const.
LRC and be added after simulation
For other ensembles, LRC terms must be added during simulation



Technique to reduce computation time 
 Neighbor List

 1967, Verlet proposed a new algorithm.
 Instead of searching for neighboring 

molecules, the neighbor of the  molecules are 
stored and used for the calculation. 



Neighbor List 



Neighbor List 

 Variable d is used to encompass 
molecules slightly outside the cut-off 
distance (buffer). 

 Update of the list
 Update of the list per 10-20 steps
 Largest displacement exceed d value.



Algorithm for Integration 



Method of Integration 

 Methodological Approach 
 Rectangular Rule, Triangular Rule, 

Simpson’s Rule 
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Monte Carlo Integration 

 Stochastic Approach 
 Same quadrature formula, different 

selection of points 
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Example …
(from Univ. at Buffalo, School of Eng. And Appl. Science,  Prof. David Kofke)



Example …
(from Univ. at Buffalo, School of Eng. And Appl. Science,  Prof. David Kofke)



Why Monte Carlo Integration ? 

 Comparison of errors 
 Methodological Integration
 Monte Carlo Integration 

 MC error vanishes much slowly for increasing n
 For one-dimensional integration, MC offers no 

advantage
 The conclusion changes when dimension of 

integral increases 
 Methodological Integration 
 Monte Carlo Integration 

22 / nxE Δ∝
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dnxE /22 /Δ∝
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MC “wins” about d = 4



Shape of High Dimensional Region

 Two (and Higher) dimensional shape can be 
complex 

 How to construct weighted points in a grid 
that covers the region R ? 

Problem : 
mean-square distance from the origin 
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Shape of High Dimensional 
Integral 
 It is hard to formulate 

methodological algorithm 
in complex boundary

 Usually we do not have 
analytical expression for 
position of boundary

 Complexity of shape can 
increase unimaginably as 
dimension of integral 
grows 

 We want 100 + 
dimensional integrals 
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Nature of the problem …



Integration over simple shape ?
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Sample Integration 



Sample Integration 



Integration over simple shape ? 

 Statistical mechanics integrals typically have 
significant contribution from miniscule regions of the 
integration space. 

 Ex ) 100 spheres at freezing fraction  =  10-260



Importance Sampling

 Put more quadrature points in the 
region where integral recieves its 
greatest contribution 

 Choose quadrature points according to 
some distribution function. 



A sample integration.

2( ) 3f x x=

( ) 2x xπ =



Importance Sampling Integral 

 Using Rectangular-Rule :
 Use unevenly spaced intervals

1xΔ 2xΔ 3xΔ nxΔ…
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