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Source of the lecture note.

7 J.M.Prausnitz and others, “Molecular
Thermodynamics of Fluid Phase Equiliria”

0 Atkins, “ Physical Chemistry”
7 Lecture Note, Prof. D.A.Kofke, University at Buffalo
7 Lecture Note, R.J.Sadus, Swineburn University



Tasks of Molecular Simulation

Model for
Intermolecular Forces
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Multiple vector space this lecture




| ntermolecular Forces

7 Intermolecular forces
For ce acting between the molecules of given mixture or
pure Species
7 It isessential to understand the natur e of
Intermolecular forcesfor the study of
molecular smulation

7 Only smple and idealized models are
available (approximation)

7 Our understanding of intermolecular forces
arefar from complete.



Types of Intermolecular forces

1 Electrostatic forces

Charged particles and permanent dipoles
7 Induced forces

Per manent dipole and induced dipole

1 Force of attraction between nonpolar
molecules

1 Specific forces

Hydrogen bonding, association and complex
formation



Potential Energy Function and
| ntermolecular Forces

7 Potential Energy : Energy duetorelative
position to one another

Fo-

dr

o If additional variablesarerequired for
potential energy function ...

F(r,0,¢,.)=-VI(r,0,0,..)



1. Electrostatic Force

7 Dueto permanent charges(ions,...)

7 Coulomb’srelation (inverse square law)

Two point charges separated from
distancer
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Nature of Electrostatic forces

7 Dominant contribution of energy ....

7 Long range nature

Forceisinversely proportional to
squar e of the distance

Major difficultiesfor concentrated
electrolyte solutions



Electrostatic forces between
dipoles

7 Dipole
Particlesdo not have net electric charge

Particles have two electric charges of same
magnitude e but opposite sign.

Dipole moment p=¢
7 Potential Energy between two dipoles
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Energies of permanent dipole,
guadrupoles

7 Orientations of molecules are governed by two
competing factors

Electric field by the presence of polor molecules
Kinetic energy = random orientation
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0 Dipole-Dipole L =3 e
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2. Induced Forces

7 Nonpolar molecules can be induced
when those molecules ar e subjected to
an electric field.
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Mean Potential Energies of
Induced dipoles

7 Permanent Dipole + Induced Dipole

2
Tl
6

Fij: r

7 Permanent Dipole + Permanent Dipole
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7 Permanent Quadrupole + Permanent Quadrupole
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3. Intermolecular Forces
between Nonpolar Molecules

7 1930, London

Therewas no adeguate explanation for the forces
between nonpolar molecules

| nstant oscillation of electrons = Distortion of electron
arrangement was sufficient to caustemporary dipole
moment

On the aver age, the magnitude and direction aver ages
zer 0, but quickly varying dipoles produce an electric
field. = induces dipolesin the surrounding molecules

| nduced dipole-induced dipole interaction



L ondon dispersion force

__3ai0‘j(|i|j)
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Potential energy between two nonpolar molecules are :

independent of temperature and

varies inversely as sixth power of the distance between them .




Repulsive force and total
Interaction

7 When molecules ar e squeezed, electronic replusion and
rising of eletronic kinetic energy began to dominatethe
attractiveforce

0 Therepulsive potential can be modeled by inver se-power
law

F:_m
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0 Thetotal potential isthe sum of two separ ate potential



Potential energy
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General form of intermolecular
potential curve

7 Mie s Potential
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The parameters for potential models can be estimated

from variety of physical properties
(spectroscopic and molecular—-beam experiments)
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Specific (Chemical) Forces

7 Association : Thetendency to from polymer

7 Solvation : Thetendency to form complexes from
different species

7 Hydrogen Bond and Electron Donor-Acceptor
complexes

7 Themodelsfor specific forces are not well established.

7 Themost important contribution in bio-molecules
(proteins, DNA, RNA,...)



Hard Sphere Potential

(@),

Ty(f = (<o)
Igy(r)=—€¢ (o,sr<o,)
Tw(=0 (r20,)

Soft-Sphere Potential with
Repulsion parameter =1
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Simplified Potential Models for
Molecular Simulations

Square Well Potential

[hs(r)=e  (r<o)
Ihs(r)=0 (rzo)

Soft-Sphere Potential with
Repulsion parameter = 12

a
F$(r)=rT



Calculation of Potential In
Molecular Monte Carlo Simulation

7 Thereareno contribution of kinetic energy in
MM C simulation

Only “configurational” terms are calculated

U=YT(r)+D D 5001+ ) > > Tu(h,r,n) +...
}

Potential between particles of triplets

Potential between pairs of particles

Effect of external field



Using reduced units...

7 Dimensionless units are used for
computer ssmulation purposes

p =po’
T =kT/¢
E'=E/¢

P =Pc’l¢



Contribution to Potential energy

0 Two-body interactions are most important term in
the calculation

7 For some cases, three body interactions may be
Important.

a3 Including three body interactionsimposesa very
lar ge increase in computation time.

toc N

m: number of interactions



Short range and long range forces

7 Short rangeforce
Dispersion and Replusion
7 Longrangeforce
lon-1on and Dipole-Dipoleinteraction

| nteraction Type Dependence | Typical E Comment
(kJ/mol)

lon-1on Ur 250

lon-Dipole 1r? 15

Dipole-Dipole 1r3 2 Stationary

Dipole-Dipole 1/r® 0.6 Rotating

L ondon 1/r® 2




Short range and long range interactions

7 Computation time-saving devices for short
range interactions
Periodic boundary condition
Neighbor list
1 Special methods arerequired for long range

Interactions. (Theinteraction extends past the
length of the ssmulation box)



e © = | Naive energy calculation

N-1 N

U :Z Zrz(rij)

i=1 j=i+l

!

Summation are chosen to avoid “self” interaction

Pseudo Code




Problems

7 Simulations are performed typically with a
few hundred moleculesarranged in a cubic
lattice.

L arge fraction of molecules can be expected at the
surfacerather than in the bulk.

7 Periodic Boundary Conditions (PBC) are
used to avoid this problem



Periodic Boundary Condition

7 Infinite Replica of the
lattice of the cubic
simulation box

7 Moleculeson any lattice
have a mirror image

/ counter partin all the
) 2 e / other boxes

7 Changesin onebox are
matched exactly in the
other boxes - surface
effectsare eliminated.




Another difficulty...

7 Summation over infinite array of
periodic Images
-> Thisproblem can be overcame using
Minimum Image Convention (M1C)



Minimum I mage Convention
(MIC)

Nearest images of colored sphere

For a given molecule, we position
the molecule at the center of a box
with dimension identical to the
simulation box.

Assume that the central molecule
only interacts with all molecules
whose center fall within this

region.

All the coordinates lie within the
range of 2L and —%2L



| mplementing PBC & MIC

7 Two Approaches

Decision based : if statement
Function based : rounding, truncation, modulus

Decision Function

BOXL2 = BOXL/2.0
IF(RX(I).GT.BOXL2) RX(1)=RX(I)-BOXL RX(I) = RX(I) — BOXL * AINT(RX()/BOXL)
IF(RX(I).LT.-BOXL2) RX(I) = RX(l) + BOXL

Y

Nearest integer



| mplementing PBC & MIC

Pseudo CODE




| mprovement dueto PBC & MIC
(Compared with naive calculation)

7 Accumulated energies are calculated for the
periodic separation distance.

7 Only molecules within cut-off distance
contributeto the calculated energy.

7 Caution : cut-off distance should be smaller
than the size of the ssmulation box -
ViolationtoMIC

1 Calculated potential = Truncated potential



Long range correction to PCB

7 Adding long range correction...

Xt = X+ X

Irc

E_= ZﬂNp_[:orzu(r)dr

Irc

»

»

For NVT ensemble, density and no. of particles are const.
- LRC and be added after simulation
For other ensembles, LRC terms must be added during simulation




Technique to reduce computation time
- Neighbor List

1 1967, Verlet proposed a new algorithm.

0 Instead of searching for neighboring
molecules, the neighbor of the moleculesare

stored and used for the calculation.



Part 1
Part 1.1

Part 2
Part 2.1

Part 2.2

Neighbor List

topOfList « 0 /Istart with empty list
loopi«1..N-1 /lselect molecule i
listEntry; < O
loopj«i+1..N /llook for neighbours of i
Evaluate rx;, ry; and rz;
Evaluate periodic images ( rx,-j', ry,-j' and rzjj')
P rx;2+ry/? +rz;?
if (r2 < (rCuf + d)) //neighbour found
topOfList « topOfList + 1
listEntry « top OfList //position of j on list
listy,onise <=J  /lenter jon list
end if
end j loop
end / loop



Neighbor List

7 Variabled isused to encompass
molecules dightly outside the cut-off
distance (buffer).

0 Update of thelist
Update of thelist per 10-20 steps
L argest displacement exceed d value.



Algorithm for I ntegration



Method of | ntegration

7 Methodological Approach

Rectangular Rule, Triangular Rule,
Simpson’s Rule
b
| = j f (x)dx
f(x) a

—|  Quadrature Formula

FITTTT x| 1=a2fm=" 22 60

Uniformly separated points




Monte Carlo I ntegration

1 Stochastic Approach

0 Same quadrature formula, different
selection of points

7 (X)

b—ag
Iz—zf(xi)
n o

X

Points are selected from uniform distribution 7z(X)



Example ...

(from Univ. at Buffalo, School of Eng. And Appl. Science, Prof. David Kofke)

HH




Example...

(from Univ. at Buffalo, School of Eng. And Appl. Science, Prof. David Kofke)

Do rectangle-rule quadrature

b Monte Catoquatais




Why Monte Carlo | ntegration ?

7 Comparison of errors
Methodological Integration E e AX*/n?
Monte Carlo Integration E o< 1/ nY?2
7 MC error vanishes much slowly for increasing n

7 For one-dimensional integration, M C offersno
advantage

7 The conclusion changes when dimension of
Integral increases

Methodological Integration E « Ax?/n?°
Monte Carlo I ntegration E o1/ 02

MC “ wins’ about d = 4
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Shape of High Dimensional Region

7 Two (and Higher) dimensional shape can be
complex

7 How to construct weighted pointsin agrid
that coverstheregion R ?

/l Problem :
[ ] mean—square distance from the origin
| /
L (X" +y?)dxdy
~ //—\"— < r2 >— j j
- [ axay




Shape of High Dimensional

| ntegral

7 Itishard toformulate
methodological algorithm
in complex boundary

0 Usually we do not have
analytical expression for
position of boundary

0 Complexity of shape can
Increase unimaginably as
dimension of integral
grows

7 Wewant 100 +
dimensional integrals

0.41

0.2

-0.2:

-0.41

o J AU () /kT)dr

j (=U (r)/KT)dr



Nature of the problem ...
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| ntegration over simple shape ?

0.41

1 inddeR e

S=
/ {O outsdeR o o

+0.5 +0.5 2 ) 0]
<r2> = I_0-5 dXI—O.s dy(x”+y)s(x, y) ° o
[22ax]"" *aysi(x,y) o

> Grid must be fine enough !



Sample I ntegration




Sample I ntegration

Do rectangle-rule quadrature




| ntegration over ssimple shape ?

0 Statistical mechanicsintegralstypically have
significant contribution from miniscule regions of the
Integr ation space.

7 Ex) 100 spheresat freezing fraction = 1020




| mportance Sampling

7 Put more quadrature pointsin the
region whereintegral recievesits
greatest contribution

7 Choose quadrature points according to
some distribution function.



A sample integration.

. f (x) = 3x2
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| mportance Sampling I ntegral

7 Using Rectangular-Rule:

Use unevenly spaced intervals 5
n

| = f(%)Ax E
i=1

_b-a 1 05

AX

0 024 044, 0
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Ax1 szAx3
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