Markov Processes

O Stochastic process

« movement through a series of well-defined states in a way that
Involves some element of randomness

 for our purposes,” states’ are microstates in the governing
ensemble

O Markov process
* stochastic process that has no memory

 selection of next state depends only on current state, and not on
prior states
» processisfully defined by a set of transition probabilities 7;
T; = probability of selecting state | next, given that presently in state .
Transition-probability matrix IT collects al




Transition-Probability Matrix

If in state 1, will stay in state 1
O Exampl € with probability 0.1
» systemwith three states { If in state 1, will move to state 3
with probability 0.4
11 12 713 0.1 05 .

II=| 7y 7wy 7 |=[09 01 Never go to state 3 from state 2

31 T3 733 03 03 04

O Requirements of transition-probability matrix
« all probabilities non-negative, and no greater than unity
e sum of each row is unity
 probability of staying in present state may be non-zero




Distribution of State Occupancies

O Consider process of repeatedly moving from one state to the
next, choosing each subseguent state according to I1

e 1525251-533232—>3—>3—>1->32—>3—>¢€c
O Histogram the occupancy number for each state

© n =3 m, = 0.33
° Nn,=5 7w, = 042
* =4 7, = 0.25 11273

O After very many steps, alimiting distribution emerges

O Click here for an applet that demonstrates a Markov process
and its approach to alimiting distribution




O Consider the product of IT with itself

The Limiting Distribution 1.

/

-

H2

11 T2 73 11 T2 713
o1 Top To3 |X| o1 Ty 7o3

31 73 733 31 7l3p 733

All ways of going from state
1 to state 2 in two steps

7117011 + o701 + 71331 |71 + Mol + 373y | ELC.

Teo1T 1 + TooMp) + Mo3llyy Moyl + Woplton + Mpa/t3y  ELC.

Te317T11 + W3pTp1 + W3aMM3y  |W31/Wyp + M3plop + 3373 | ELC.

Probability of going from
state 3 to state 2 in two steps

/

O Ingeneral 11" isthe n-step transition probability matrix
« probabilities of going from state i to | in exactly n steps

my

n=| 2 2

7 7

3

74
75

defines 7"




The Limiting Distribution 2.

O Define 7Z'i(o) as a unit state vector
29=10 0 zP=0 10 z%=0 0 1
O Then ™ =7 OI1" isavector of probabilities for ending at
each state after n steps if beginning at state |
my Ty g
A =r0m' = 0 0) ) £ 2 |~(x P D)
Ty TR Ty
O The limiting distribution correspondsto n — oo
- independent of initial state 7\ =#$") =#{") =z




The Limiting Distribution 3.

O Stationary property of ©t

7= lim | 700"

N—co

= Jim [2On™)m

=l

O n isaleft eigenvector of IT with unit eigenvalue

 such an eigenvector is guaranteed to exist for matrices with rows
that each sumto unity

O Equation for elements of limiting distribution

. — . 7y =0.17; +0.97, + 0.37
7 = 27T 01 05 04) * ! 2 :
J Ty = 05ﬂ'1 + 0171'2 + 0371'3

eg. [I=/09 0.1 00
g = 047[1 + 0072'2 + 0471'3

0.3 03 04
7[1+7Z'2+7[3:7Z'1+7Z'2+7Z'3

not independent




Detalled Balance

O Eigenvector equation for limiting distribution
o Tl = Z?Z'jﬂ'ji

O A sufficient (but not necessary) condition for solution is
° ﬂ'iﬂ'ij = ﬂ'jﬂ'ji

» “detailed balance” or “ microscopic reversibility”

O Thus
y 75i=z7fj75ji 01 05 04 For agivenIl, it is not always
ZJ: m=lo9 01 00 Eglssbleto saftlsf}[/h('jetnalled
= 7Z'i7Z'ij ance; e.g. 1or tnis
j 03 03 04 Tallay % 7[27[29\
=”izﬂij =7
j Zero




Deriving Transition Probabilities

O Turn problem around...

O ...given adesired it, what transition probabilities will yield
this as alimiting distribution?

O Construct transition probabilities to satisfy detailed balance

O Many choices are possible

- eg. 7=(025 05 0.25) ! [0-97 0.02 0.01

001 098 0.01| -easteficient
 try them out

0.01 0.02 0.97

O 1 O 042 033 0.25 0.0 05 05

IT= {0.5 0 0.5] IT= {0.17 0.66 0.17} IT= {0.25 0.5 0.25}
O 1 O 0.25 033 042 05 05 00
Most efficient Barker Metropolis




Metropolis Algorithm 1.

O Prescribes transition probabilities to satisfy detailed balance,
given desired limiting distribution
O Recipe:
From a statei...
* with probability z;, choose atrial state] for the move (note: z; = 7))
* if > 7, accept | asthe new state
* otherwise, accept state ] with probability 7/ 7
generate arandom number R on (0,1); accept if R </

* If not accepting | as the new state, take the present state as the next
one in the Markov chain (z; # 0)

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller,
J. Chem. Phys., 21 1087 (1953)




Metropolis Algorithm 2.

O What are the transition probabilities for this algorithm?

* Without loss of generality, definei as the state of greater probability
7Z'.

_ j T > T
Thj = Tjj X—
7T . _ (7
Ingenera: 7 =1 mm(,lﬁ
Tji = Tji 7T
i =1- ) 7
j#i
O Do they obey detailed balance?
?
ﬂ'iﬂ'ij zﬂ'jﬂ’-ji
7Z'J ?
ﬂiTij ;iZﬂ'jTji

Tij = Tji
O Yes, aslong asthe underlying matrix T of the Markov chainis
symmetric
 thiscan be violated, but acceptance probabilities must be modified
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Markov Chains and Importance Sampling 1.

O Importance sampling specifies the desired limiting distribution

O We can use aMarkov chain to generate quadrature points
according to this distribution

0.4
O Examp|e s:{l inside R
0 outsideR 0.2
+0.5 +0.5 2 2 5
<r2> _ _[_0_5 dx_[_o.5 dy(X” + y7)s(X,y) _ <r S>v o

R
T
J:S : dXE;,; dys(x, y) <S>V o %"ﬁ

g = normalization constant

* Method 1: let z,(x, y) = s(x, Y)/Ch/

« then /2 5 )
s Gyl Qp(r > . 5 .
<r2>: Vim _ mo_ m =<r2> - Smpl){)wh;ne: W|t|h pomtsr
ven ropolis sampiin
<S> <q]->7'[1 o] ! 0 Y P Ping
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™
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Markov Chains and Importance Sampling 2.

O Example (cont’ d)
« Method 2: let  z(x,y)=r?s/q,

. then<r2>=<rﬁzzs>”2_ <CI2>,[2 B o 1

<;2>7[2 ) <qZ/r2>ﬂ2 - d, <1/r2>7[2 B <r—2>”2

O Algorithm and transition probabilities
e givenapointintheregion R
* generate a new point in the vicinity of
given point
X" =x +r(-1,+1)ox y"™ =y +r(-1,+1)oy
* accept with probability minLz"™ /7% = R /

s note ﬂ_lnew - Snew/ql - gnew 7 *T‘-—b_\

ny ld - goldy o) 529 ¥~ Normalization constants cancel!

« Method 1: accept all movesthat stay in R
new old
- Method 2: if in R, accept with probability (2)""/("?




Markov Chains and Importance Sampling 3.

O Subtle but important point

* Underlying matrix T is set by the trial-move

algorithm (select new point uniformly in
vicinity of present point)

f

It isimportant that new points are selected

in a volume that is independent of the
present position

 |f wergect configurations outside R,
without taking the original point asthe
“new” one, then the underlying matrix
becomes asymmetric

Different-sized / » |

trial sampling

regions |

-

—

‘—ﬁ

T
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Evaluating Areas with Metropolis Sampling

O What If we want the absolute area
of theregion R, not an average over

1t? 105 405
A= . dx ‘[_0.5 dys(x,y) = (s),

o Let m(Xy)=s(xy)/q

P A (2] -la),—a

* \We need to know the normalization
constant g,

 but thisis exactly the integral that we
are trying to solve!

O Absolute integrals difficult by MC
* relatesto free-energy evaluation

0.4:
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Summary

O Markov process is a stochastic process with no memory

O Full specification of processis given by amatrix of
transition probabilitiesI1

O A distribution of states are generated by repeatedly stepping
from one state to another according to I1

O A desired [imiting distribution can be used to construct
transition probabilities using detailed balance

« Many different IT matrices can be constructed to satisfy detailed
balance

* Metropolis algorithmis one such choice, widely used in MC
simulation

O Markov Monte Carlo is good for evaluating averages, but not
absolute integrals




