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Markov Processes

 Stochastic process
• movement through a series of well-defined states in a way that 

involves some element of randomness
• for our purposes,“states” are microstates in the governing 

ensemble
Markov process

• stochastic process that has no memory
• selection of next state depends only on current state, and not on 

prior states
• process is fully defined by a set of transition probabilities πij

πij = probability of selecting state j next, given that presently in state i.
Transition-probability matrix Π collects all πij
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Transition-Probability Matrix

 Example
• system with three states

 Requirements of transition-probability matrix
• all probabilities non-negative, and no greater than unity
• sum of each row is unity
• probability of staying in present state may be non-zero

11 12 13

21 22 23

31 32 33

0.1 0.5 0.4
0.9 0.1 0.0
0.3 0.3 0.4

π π π
π π π
π π π

   
   Π ≡ =      
   

If in state 1, will move to state 3 
with probability 0.4

If in state 1, will stay in state 1 
with probability 0.1

Never go to state 3 from state 2
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Distribution of State Occupancies

 Consider process of repeatedly moving from one state to the 
next, choosing each subsequent state according to Π
• 1→ 2 → 2 → 1 → 3 → 2 → 2 → 3 → 3 → 1 → 2 → 3 → etc.

 Histogram the occupancy number for each state
• n1 = 3 π1 = 0.33
• n2 = 5 π2 = 0.42
• n3 = 4 π3 = 0.25

 After very many steps, a limiting distribution emerges
 Click here for an applet that demonstrates a Markov process 

and its approach to a limiting distribution

1 2 3
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 Consider the product of Π with itself

 In general       is the n-step transition probability matrix
• probabilities of going from state i to j in exactly n steps

The Limiting Distribution 1.

11 12 13 11 12 13
2

21 22 23 21 22 23

31 32 33 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32

21 11 22 21 23 31 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22

.

.
etc
etc

π π π π π π
π π π π π π
π π π π π π
π π π π π π π π π π π π
π π π π π π π π π π π π
π π π π π π π π π π

   
   Π ≡ ×      
   

+ + + +
= + + + +

+ + + 33 32 .etcπ π

 
 
  + 

All ways of going from state 
1 to state 2 in two steps

Probability of going from 
state 3 to state 2 in two steps

nΠ

( ) ( ) ( )
11 12 13
( ) ( ) ( )
21 22 23
( ) ( ) ( )
31 32 33

n n n

n n nn

n n n

π π π

π π π

π π π

 
 
 Π ≡
 
 
 

( )defines n
ijπ
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The Limiting Distribution 2.

 Define        as a unit state vector

 Then                        is a vector of probabilities for ending at 
each state after n steps if beginning at state i

 The limiting distribution corresponds to n → ∞
• independent of initial state 

( ) ( ) ( )(0) (0) (0)
1 2 31 0 0 0 1 0 0 0 1π π π= = =

( ) (0)n
i i

nπ π≡ Π

(0)
iπ

( ) ( )
( ) ( ) ( )
11 12 13

( ) (0) ( ) ( ) ( ) ( ) ( ) ( )
1 1 21 22 23 11 12 13

( ) ( ) ( )
31 32 33

1 0 0

n n n

n n n n n n nn

n n n

π π π

π π π π π π π π

π π π

 
 
 = Π ≡ =
 
 
 

( ) ( ) ( )
1 2 3π π π π∞ ∞ ∞= = ≡
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The Limiting Distribution 3.

 Stationary property of π

 π is a left eigenvector of Π with unit eigenvalue
• such an eigenvector is guaranteed to exist for matrices with rows 

that each sum to unity
 Equation for elements of limiting distribution π

( )
(0)

(0) 1

lim

lim

n
in

n
in

π π

π

π

→∞

−
→∞

 = Π 

 = Π Π 

= Π

i j ji
j

π π π= 1 1 2 3

2 1 2 3

3 1 2 3

1 2 3 1 2 3

0.1 0.9 0.3
0.1 0.5 0.4

0.5 .1 0.3
. .  0.9 0.1 0.0

0.4 0.0 0.4
0.3 0.3 0.4

e g

π π π π
π π π π
π π π π
π π π π π π

= + +
  = + 0 + Π =   = + + 
  + + = + +
not independent
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 Eigenvector equation for limiting distribution
•

 A sufficient (but not necessary) condition for solution is
•
• “detailed balance” or “microscopic reversibility” 

 Thus
•

Detailed Balance

i j ji
j

π π π=

i ij j jiπ π π π=

i j ji
j

i ij
j

i ij i
j

π π π

π π

π π π

=

=

= =







0.1 0.5 0.4

0.9 0.1 0.0

0.3 0.3 0.4

Π =

 
 
  
 

For a given Π, it is not always 
possible to satisfy detailed 
balance; e.g. for this Π

3 32 2 23π π π π≠

zero
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Deriving Transition Probabilities

 Turn problem around...
…given a desired π, what transition probabilities will yield 

this as a limiting distribution?
 Construct transition probabilities to satisfy detailed balance
Many choices are possible

• e.g. 
• try them out

( )0.25 0.5 0.25π =

0.0 0.5 0.5
0.25 0.5 0.25
0.5 0.5 0.0

 
 Π =   
 

0.42 0.33 0.25
0.17 0.66 0.17
0.25 0.33 0.42

 
 Π =   
 

0.97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

 
 Π =   
 

0 1 0
0.5 0 0.5
0 1 0

 
 Π =   
 

MetropolisBarker

Least efficient

Most efficient
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Metropolis Algorithm 1.

 Prescribes transition probabilities to satisfy detailed balance, 
given desired limiting distribution

 Recipe:  
From a state i…
• with probability τij, choose a trial state j for the move (note: τij = τji) 
• if πj > πi, accept j as the new state
• otherwise, accept state j with probability πj/πi

generate a random number R on (0,1); accept if R < πj/πi

• if not accepting j as the new state, take the present state as the next 
one in the Markov chain 

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 
J. Chem. Phys., 21 1087 (1953)

( )0iiπ ≠
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Metropolis Algorithm 2.
What are the transition probabilities for this algorithm?

• Without loss of generality, define i as the state of greater probability

 Do they obey detailed balance?

 Yes, as long as the underlying matrix Τ of the Markov chain is 
symmetric
• this can be violated, but acceptance probabilities must be modified

i jπ π>

in general:  min ,1j
ij ij

i

π
π τ

π
  

=  
  

?

?

i ij j ji

j
i ij j ji

i

ij ji

π π π π
π

π τ π τ
π

τ τ

=

=

=

1

j
ij ij

i

ji ji

ii ij
j i

π
π τ

π
π τ

π π
≠

= ×

=

= −
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Markov Chains and Importance Sampling 1.

 Importance sampling specifies the desired limiting distribution
We can use a Markov chain to generate quadrature points 

according to this distribution
 Example

• Method 1: let
• then 

0.5 0.5 22 2
2 0.5 0.5

0.5 0.5

0.5 0.5

( ) ( , )

( , )
V

V

r sdx dy x y s x y
r

sdx dys x y

+ +

− −
+ +

− −

+
= = 

 

1     inside R

0   outside R
s =





1 1( , ) ( , ) /x y s x y qπ =
V

q = normalization constant

2

1 1 1 1

1
11 1

2 2
1 1

2 2

1 1

r s

s

q r q r
r r

q q

π π π π
πππ π

= = = =
Simply sum r2 with points 
given by Metropolis sampling
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Markov Chains and Importance Sampling 2.
 Example (cont’d)

• Method 2: let
• then

 Algorithm and transition probabilities
• given a point in the region R
• generate a new point in the vicinity of 

given point
xnew = x + r(-1,+1)δx   ynew = y + r(-1,+1)δy

• accept with probability
• note

• Method 1: accept all moves that stay in R
• Method 2: if in R, accept with probability  

2
2( , ) /x y r s qπ =

2

2 2 2

2 2 2 22

22 2
2 2 2

2 2

1
/ 1/

r s

s

q qr
q r q r r

π π π

π π π ππ

−= = = =

min(1, / )new oldπ π

1 1

1 1

/
/

new new new

old old old
s q s
s q s

π
π

= =
Normalization constants cancel!

( ) ( )2 2new old
r r
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 Subtle but important point
• Underlying matrix Τ is set by the trial-move 

algorithm (select new point uniformly in 
vicinity of present point)

• It is important that new points are selected 
in a volume that is independent of the 
present position

• If we reject configurations outside R, 
without taking the original point as the 
“new” one, then the underlying matrix 
becomes asymmetric 

Markov Chains and Importance Sampling 3.

Different-sized 
trial sampling 
regions
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Evaluating Areas with Metropolis Sampling

What if we want the absolute area 
of the region R, not an average over 
it?

• Let
• then

• We need to know the normalization 
constant q1

• but this is exactly the integral that we 
are trying to solve!

 Absolute integrals difficult by MC
• relates to free-energy evaluation

0.5 0.5

0.5 0.5
( , ) VA dx dys x y s

+ +

− −
= = 

1 1( , ) ( , ) /x y s x y qπ =

11 1
1 1

sA q qππ π
= = =
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Summary
Markov process is a stochastic process with no memory
 Full specification of process is given by a matrix of 

transition probabilities Π
 A distribution of states are generated by repeatedly stepping 

from one state to another according to Π
 A desired limiting distribution can be used to construct 

transition probabilities using detailed balance
• Many different  Π matrices can be constructed to satisfy detailed 

balance
• Metropolis algorithm is one such choice, widely used in MC 

simulation
Markov Monte Carlo is good for evaluating averages, but not 

absolute integrals


