Applied Statistical Mechanics Lecture Note - 2

Classical Mechanics and / Qunatum Mechanics

Jeong Won Kang Department of Chemical Engineering Korea University

Mechanics /Thermodynamics

- Mechanics
 - Dealing with objects and motions
 - Dealing with mechanical variables
 - Velocity, acceleration, force,
- Thermodynamics
 - Dealing with heat, work and energy
 - Dealing with thermodynamic functions
 - Internal energy, Enthalpy, Entropy, Gibbs energy,...

Classical Mechanics

• Newtonian Mechanics

 $\mathbf{F} = m\mathbf{a} = m\mathbf{\ddot{r}}$

$$\mathbf{r} = \mathbf{r}(x, y, z)$$
$$\ddot{\mathbf{r}} = \frac{d^2 \mathbf{r}}{dt^2}$$

$$\mathbf{F} = -\nabla U$$

= -($\mathbf{i} \frac{\partial U}{\partial x} + \mathbf{j} \frac{\partial U}{\partial x} + \mathbf{k} \frac{\partial U}{\partial x}$)

Lagrangian Mechanics

• Invariant equation under coordinate transformation

$$L = K - U$$

$$K = \frac{m\dot{q}^2}{2}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = \frac{\partial L}{\partial q_j} \qquad j = 1, 2, 3, \dots$$

Hamiltonian Mechanics

• More convenient for quantum mechanics and statistical mechanics

H = K + U

$$H(\mathbf{r}^{N},\mathbf{p}^{N}) = \sum_{i} \frac{\mathbf{p}_{i}}{2m_{i}} + U(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N})$$

Legendre transformation

$$\begin{bmatrix} \frac{\partial H}{\partial \mathbf{r}_i} \end{bmatrix} = -\dot{\mathbf{p}}_i$$
$$\begin{bmatrix} \frac{\partial H}{\partial \mathbf{p}_i} \end{bmatrix} = \dot{\mathbf{r}}_i$$

Quantum Mechanics

- Quantum Mechanics
 - Relation between structure and (Particle / Atom / Molecule) and its energy (or energy distribution)

Classical Physics

- Described by Newton's Law of Motion (17th century)
 - Successful for explaining the motions of objects and planets

$$H = \sum_{i} \frac{p_i}{2m_i} + U(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

Sir Isaac Newton

 In the end of 19th century, experimental evidences accumulated showing that classical mechanics failed when applied to very small particles.

The failures of Classical Physics

- Black-body radiation
 - A hot object emits light (consider hot metals)
 - At higher temperature, the radiation becomes shorter wavelength (red → white → blue)
 - Black body : an object capable of emitting and absorbing all frequencies uniformly

The failures of classical physics

- Experimental observation
 - As the temperature raised, the peak in the energy output shifts to shorter wavelengths.
 - Wien displacement law

$$T\lambda_{\rm max} = \frac{1}{5}c_2$$
 $c_2 = 1.44 \,\rm cm \, K$

Stefan-Boltzmann law

$$\mathbf{E} = E / V = aT^4 \qquad M = \boldsymbol{\sigma}T^4$$

지유 등의 친리

Rayleigh – Jeans law

- First attempted to describe energy distribution
- Used classical mechanics and equipartition principle

$$dE = \rho d\lambda \qquad \rho = \frac{8\pi kT}{\lambda^4}$$

- Although successful at high wavelength, it fails badly at low wavelength.
- Ultraviolet Catastrophe
 - Even cool object emits visible and UV region
 - We all should have been fried !

Lord Rayleigh

Planck's Distribution

- Energies are limited to discrete value
 - Quantization of energy

$$E = nhv$$
, $n = 0, 1, 2, ...$

• Planck's distribution

$$dE = \rho d\lambda \qquad \rho = \frac{8\pi hc}{\lambda^5 (e^{hc/\lambda kT} - 1)}$$

• At high frequencies approaches the Rayleigh-Jeans law

$$(e^{hc/\lambda kT} - 1) = (1 + \frac{hc}{\lambda kT} + \dots) - 1 \approx \frac{hc}{\lambda kT}$$

• The Planck's distribution also follows Stefan-Boltzmann's Las

Max Planck

Heat Capacities

- Dulong Petit's Law
 - The molar heat capacities of monoatomic solids are the same , close to 25 J/mol. K
 - Can be justified using classical mechanics
 - Mean energy of an atom oscillates about its mean position of solid is kT

$$U_m = 3N_A kT = 3RT$$

$$C_v = \left(\frac{\partial U_m}{\partial T}\right)_V = 3R = 24.9 \text{ J/mol K}$$

• Unfortunately, at low T the value approaches to zero

Einstein and Debye Formula

• Einstein used the hypothesis that energy of oscillation is confined to discrete value

$$C_{v} = 3Rf^{2} \qquad f = \frac{\theta_{E}}{T} \left(\frac{e^{\theta_{E}/2T}}{e^{\theta_{E}/2T} - 1} \right)$$

• Debye later refined Einstein formula taking into account that atoms are not oscillating at the same frequency.

$$C_{v} = 3Rf \qquad f = 3\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{\theta_{D}/T} \left[\frac{x^{4}e^{x}}{\left(1-e^{x}\right)^{2}}\right] dx$$

Einstein and Debye's Theory

Atomic and Molecular Spectra

- Light comes from exited atomic lamps shows sharp, specific lines, rather than a broad continua.
- This observation can be understood if we assume that the energy of atoms and molecules is confined to discrete values.

An atomic spectrum A molecular spectrum

Atomic and Molecular Spectra

 Spectral lines can be accounted for if we assume that a molecule emits a photon as it changes between discrete energy levels.

- Particle character of electromagnetic radiation
 Observation :
 - Energies of electromagnetic radiation of frequency v can only have E = 0, hv, 2hv, ...

(corresponds to particles n = 0, 1, 2, ... with energy = hv)

- Particles of electromagnetic radiation : Photon
- Discrete spectra from atoms and molecules can be explained as generating a photon of energy hv. $\Delta E = hv$

- Photoelectric effect
 - Ejection of electrons from metals when they are exposed to UV radiation
 - Experimental characteristic
 - No electrons are ejected, regardless of the intensity of radiation, unless its frequency exceeds a threshold value characteristic of the metal.
 - The kinetic energy of ejected electrons increases linearly with the frequency of the incident radiation but is independent of the intensity of the radiation .
 - Even at low light intensities, electrons are ejected immediately if the frequency is above threshold.

- Photoelectric effect
 - Observations suggests ;
 - Collision of particle like projectile that carries energy
 - Kinetic energy of electron = hν –Φ
 Φ : work function (characteristic of the meltal) energy required to remove a electron from the metal to infinity
 - For the electron ejection , $hv > \Phi$ required.
 - In case $h\nu < \Phi$, no ejection of electrons

• Photoelectric effect

자유 정의

진입

고려대학교

Wave-Particle Duality -The wave character of particles

- Diffraction of electron beam from metal surface
 - Davison and Germer (1925)
 - Diffraction is characteristic property of wave
 - Particles (electrons) have wave like properties !
 - From interference pattern, we can get structural information of a surface
 LEED (Low Energy Electron Diffraction)

Wave Particle Duality

- De Brogile Relation (1924)
 - Any particle traveling with a linear momentum p has wave length λ

Matter wave: $p = mv = h/\lambda$

- Macroscopic bodies have high momenta (large p)
- \rightarrow small wave length
- →wave like properties are not observed

Schrödinger equation

- 1926, Erwin Schrödinger (Austria)
 - Describe a particle with wave function
 - Wave function has full information about the particle

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V(x)\psi = E\psi$$

Time independent Schrödinger equation for a particle in one dimension

2nd order differential equation : Can be easily solved when V(x) and B.C are known !

An example

• Constant potential energy V(x) = V

 $\frac{d^2\psi}{dx^2} = -\frac{2m}{\hbar^2} (E - V)\psi$ A solution of this equation is $\psi = e^{ikx} = \cos kx + i \sin kx \qquad k = \left\{\frac{2m(E - V)}{\hbar^2}\right\}^{1/2}$

Schrodinger Equation : General form

Table 11.1 The Schrödinger equation

For one-dimensional systems: $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V(x)\psi = E\psi$

where V(x) is the potential energy of the particle and E is its total energy. For threedimensional system

 $-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$

where *V* may depend on position and ∇^2 ('del squared') is

 $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

In systems with spherical symmetry:

 $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\Lambda^2$

where

 $\Lambda^2 = \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \frac{\partial}{\partial\theta}$

In the general case the Schrödinger equation is written

 $H\psi = E\psi$

Where *H* is the hamiltonian operator for the system:

 $H = -\frac{\hbar^2}{2m}\nabla^2 + V$

For the evolution of a system with time, it is necessary to solve the time-dependent Schrödinger equation

$$H\Psi = \mathrm{i}\hbar\frac{\partial\Psi}{\partial t}$$

 $H\Psi = E \Psi$

H = T + V

: Hamiltonian operator

The Born interpretation of the Wave Function

- The Wave function
 - Contains all the dynamic information about the system
 - Born made analogy with the wave theory of light (square of the amplitude is interpreted as intensity – finding probability of photons)
 - Probability to find a particle is proportional to $|\psi|^2 = \psi^* \psi$ Probability Density
 - It is OK to have negative values for wave function

Max Born

Born interpretation of the Wave Function

If the wavefunction of a particle has the value ψ at some point x, then the probability of finding the particle between x and x + dx is proportional to $|\psi|^2 dx$.

If the wavefunction of a particle has the value ψ at some point r, then the probability of finding the particle in an infinitesimal volume $d\tau = dx dy dz$ at that point is proportional to $|\psi|^2 d\tau$.

Born interpretation of the Wave Function

11.17 The sign of a wavefunction has no direct physical significance: the positive and negative regions of this wavefunction both correspond to the same probability distribution (as given by the square modulus of ψ and depicted by the density of shading).

자유 정의

고려대학교

Normalization

- When ψ is a solution, so is $N\psi$
- We can always find a *normalization const.* such that the proportionality of Born becomes equality

 $N^2 \int \psi^* \psi dx = 1$

 $\int \psi^* \psi dx = 1$ $\int \psi^* \psi dx dy dz = \int \psi^* \psi d\tau = 1$

Normalization const. are already contained in wave function

Quantization

 교려대학교

- Energy of a particle is quantized
 - →Acceptable energy can be found by solving Schrödinger equation
 - → There are certain limitation in energies of particles

The information in a wavefunction

• Simple case

– One dimensional motion, V=0

Probability Density

 $\mathbf{B}=\mathbf{0}$

Eigenvalues and eigenfucntions

• Momentum

$$E = \frac{k^2 \hbar^2}{2m} = \frac{p^2}{2m} \longrightarrow p = k\hbar$$

• Succinct form of Schrödinger eqn.

Eigenvalues and eigenfucntions

• Eigenvalue equation

(Operator)(function) = (constant factor)*(same function)

(operator corresponding to observable) ψ = (value of observable) $\times \psi$

Operators

$$\hat{\Omega}\psi = \omega\psi$$

- Position $x \quad \hat{x} = x \times$
- Momentum p_x $\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$
- Potential energy $V = \frac{1}{2}kx^2$ $\hat{V} = \frac{1}{2}kx^2 \times$
- Kinetic energy $E_K = \frac{p_x^2}{2m}$ $\hat{E}_K = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$
- Total energy

 $\hat{H} = \hat{E}_{K} + \hat{V} = -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}} + \hat{V}$

Example

$$\Psi = Ae^{ikx}$$
$$\hat{p}_x = \frac{\hbar}{i}\frac{d}{dx}$$
$$\frac{\hbar}{i}\frac{d}{dx}\Psi = p_x\Psi$$

 $\Psi = Be^{-ikx}$ $\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx}$

$$\frac{\hbar}{i}\frac{d}{dx}\psi = p_x\psi$$

$$\frac{\hbar}{i}\frac{d}{dx}Ae^{ikx} = -khAe^{ikx} = kh\psi$$

$$\frac{\hbar}{i}\frac{d}{dx}Be^{-ikx} = khBe^{ikx} = -kh\psi$$

 $p_x = +kh$

 $p_x = -kh$

Corresponds to de Brogile relation but with two direciton

$$p_x = k\hbar = h / \lambda$$
$$\lambda = 2\pi / k$$

Properties of Wavefuncitons

Superposition and
expectation value

$$\mathbf{A} = \mathbf{B} \qquad \boldsymbol{\psi} = 2A\cos kx \qquad |\boldsymbol{\psi}|^2 = 4|A|\cos^2 kx$$

$$\hat{p}_x \boldsymbol{\psi} = \frac{2\hbar}{i} \frac{d\cos kx}{dx} = \frac{2k\hbar}{i} A\sin kx$$
This expression is not eigenvalue equation
 \Rightarrow Can be interpreted as a liner combination of e^{ikx} and e^{-ikx}
 $\boldsymbol{\psi} = \boldsymbol{\psi}_{+k\hbar} + \boldsymbol{\psi}_{-k\hbar}$

<u>자유</u> 등의 린리

고려대학교

$$\boldsymbol{\psi} = c_1 \boldsymbol{\psi}_1 + c_2 \boldsymbol{\psi}_2 + \ldots = \sum_k c_k \boldsymbol{\psi}_k$$

Superposition and expected value

- When the momentum is measure, in a single observation one of the eigenvalues corresponding to the wave function k,that contributes to the superposition will be found
- The proportionality of measuring a particular eigenvalue in a series of observation is proportional to square modulus of coeff. In the linear combination $|c_k|^2$
- The average value of a large number of observation is given by expected value :

$$\left< \Omega \right> = \int \psi^* \hat{\Omega} \, \psi d \, \tau$$

The uncertainty principle

- When momentum is known precisely, the position cannot be predicted precisely
 - Shown by examples
 - Only probability can be predicted

