Applied Statistical Mechanics Lecture Note - 4

Quantum Mechanics – Molecular Structure

Jeong Won Kang Department of Chemical Engineering Korea University

Subjects

■ Structure of Complex Atoms - Continued **Molecular Structure**

Structure of Complex Atoms Continued

The Spectra of Complex Atoms

- The spectra of atoms rapidly become very complicated as the number of electrons increases.
- Spectra of an atom : The atom undergoes transition with a change of energy; $\Delta E = h v$

 \Box Gives information about the energies of electron

- \Box However, the actual energy levels are not given solely by the energies of orbitals
- Electron-Electron interactions

FR 52 Measuring Ionization Energy (H atoms) 고려대학교 \blacksquare The plot of wave numbers vs. $1/n^2$ gives the ionization energy for hydrogen atoms 110 $\Delta E = E - E_{lower} = h \, \nu$ 105 *R E* 100 $\overline{V} = \frac{V}{V}$ $= -\frac{V_H}{r} - \frac{L_{lower}}{r}$ $\frac{i}{(10^3 \text{ cm}^{-1})}$ 2 *hc* **Slope = I**95 *c n* $I = E$ _{lower} 90

85

 $80\frac{L}{0}$

 0.05

 0.1 0.15 0.2 0.25

 $1/n^2$

$$
\overline{V} = \frac{I}{hc} - \frac{R_H}{n^2}
$$

Quantum defects and ionization energies

- Energy levels of many-electron atoms do not vary as $1/n^2$
- The outermost electron
	- O Experience slightly more charge than 1e
	- \Box Other Z-1 atoms cancel the charge slightly lower than 1
	- \Box \Box Quantum Defect (δ): empirical quantity

$$
E = -\frac{hcR_H}{n^2}
$$

\n
$$
E = -\frac{hcR}{(n-\delta)^2}
$$

\n
$$
\overline{v} = \frac{I}{hc} - \frac{R}{n^2}
$$
 Rydberg state

Pauli exclusion principle and the spins

■ Palui exclusion principle

- \Box " No more than two electrons may occupy any given orbital and, if two occupy one orbital, then their spin must be paired "
- \Box " When label of any two identical fermions are exchanged, the total wavefunction changes sign. When the label of any two identical bosons are exchanged, the total wavefunction retain its sign "

Pauli exclusion principle and the spins

Two electrons (fermions) occupy an orbital Ψ then ;

 $\Psi(1,2) = -\Psi(2,1)$

Total Wave function $=$ (orbital wave function)*(spin wave function)

 $\psi(1)\psi(2)\beta(1)\beta(2)$ $\psi(1)\psi(2)\sigma(1,2)$ $\psi(1)\psi(2)\sigma_+(1,2)$ $\psi(1)\psi(2)\alpha(1)\alpha(2)$

Normalized Linear Combination of two spin wave functions

Pauli exclusion principle and the spins

Required:
$$
\Psi(1,2) = -\Psi(2,1)
$$

 $\psi(1)\psi(2)\beta(1)\beta(2)$ $\psi(1)\psi(2)\sigma(1,2)$ $\psi(1)\psi(2)\sigma_+(1,2)$ $\psi(1)\psi(2)\alpha(1)\alpha(2)$ $\Psi(1,2) = \Psi(2,1)$ $\Psi(1,2) = -\Psi(2,1)$ $\Psi(1,2) = \Psi(2,1)$ $\Psi(1,2) = \Psi(2,1)$

 $\sigma_{+}(1,2) = (1/2^{1/2})\{\alpha(1)\beta(2) + \beta(1)\alpha(2)\} = \sigma_{+}(2,1)$ $(1,2) = (1/2^{1/2})\{\alpha(1)\beta(2) - \beta(1)\alpha(2)\} = -\sigma(2,1)$ $\sigma_{-}(1,2) = (1/2^{1/2})\alpha(1)\beta(2) - \beta(1)\alpha(2)\} = -\sigma_{-}$

Singlet and Triplet State

■ Excited State of He atom

 \Box 1s² \rightarrow 1s¹ 2s¹

 \Box The two electrons need not to be paired

 \Box Singlet : paired spin arrangement

 $\sigma_{(1,2)} = (1/2^{1/2}) \{ \alpha(1) \beta(2) - \beta(1) \alpha(2) \}$ $-\beta(1)\alpha$

 \Box Triplet : parallel spin arrangement

 $\alpha(1)\alpha(2)$

$$
\sigma_{+}(1,2) = (1/2^{1/2})\{\alpha(1)\beta(2) + \beta(1)\alpha(2)\}\
$$

$$
\beta(1)\beta(2)
$$

 $m_S = -\frac{1}{2}$

 $m_{\rm s} = -\frac{1}{2}$

Hund's principle : *triplet states generally lie lower than triplet state*

Spectrum of atomic Helium

- Spectrum of He atom is more complicated than H atom
	- \Box Only one electron is excited
		- Excitation of two electrons require more energy than ionization energy
	- \Box No transitions take place between singlet and triplet states
		- Behave like two species

Spin-Orbit Coupling

- Electron spins has a further implication for energies of atoms when *l > 0 (* finite orbital angular momentum)
- (spin magnetic momentum) + (magnetic moment doe to orbital angular momentum) \rightarrow spin-orbit coupling

■ Spin-Orbit Coupling constant (*A*)

Spin-orbit coupling

 \Box Dependence of spin-orbit interaction on the value of j

$$
E_{l,j,s} = \frac{1}{2} hcA(j(j+1) - l(l+1) - s(s+1))
$$

- Spin-orbit coupling depends on the nuclear charge
	- \Box The greater the nucleus charge \rightarrow the stronger spin-orbit coupling
	- \Box Very small in H, very large in Pb
- \blacksquare Fine structure
	- **□** Two spectral lines are observed
	- \Box The structure in a spectrum due to spinorbit coupling
	- \Box Ex) Na (street light)

Term symbols and selection rules

Molecular Structure

කය හතු
ශුලා Topics 고려대학교 ■ Valence-Bond Theory **Molecular Orbital Theory**

Born-Oppenheimer approximation

Assumption

 \Box The nuclei is fixed at arbitrary location

 \Box H2 molecule

- Nuclei move about 1 pm
- Electrons move about 1000 pm

\blacksquare Use

 \Box different separation

 \rightarrow solve Schrodinger equation

 \rightarrow Energy of molecules vary with bond length

 \Box Equilibrium bond length (R_e)

□ Bond Dissociation energy (D_e)

Structure Prediction, Property Estimation

Valence-Bond Theory

Consider H_2 molecule \Box If electron 1 is on atom A and electron 2 is on atom B

> $\psi = \psi_{H1S_{A}}(r_{1})\psi_{H1S_{A}}(r_{1})$ $\psi = A(1)B(2) \qquad \psi = A(2)B(1)$ $\psi = A(1)B(2) \pm A(2)B(1)$ $\psi = A(1)B(2) + A(2)B(1)$ Simple notation Linear combination of wave functions Lower energy

σ - bond

- *Cylindrical symmetry* around internuclear axis
- Rambles s-orbital : called sigma-bond
- Zero angular momentum around internuclear axis
- ▊ Molecular potential energy
- Spin : spin paring

 \Box According to Pauli principle spin must be paired

π-bond

- \Box Pairing of the electrons
- \Box Accumulation of electron density in the internulear region

■ N2 atom
$$
2s_2 2p_x^1 2p_y^1 2p_z^1
$$

$$
p_z^1 \longrightarrow \sigma
$$
-bond

 $p_{\scriptscriptstyle x}^{\scriptscriptstyle 1}$ p_{y}^{1} π−**bond** Cannot form σ-bond not symmetrical around internuclear axis

Water molecule

$$
2s_2 2p_x^2 2p_y^1 2p_z^1 \qquad \text{Two } \sigma\text{-bonds}
$$

Bond angle : 90 degree Experimental 104.5 degree !

Promotion

\blacksquare \blacksquare CH₄ molecule $2 s_{2} 2 \, p_{x}^{1} 2 \, p_{y}^{1}$

 \Box cannot be explained by valence-bond theory

□ only two electrons can form bonds

Promotion

 \Box Excitation of electrons to higher energy

 \Box If bonds are formed (lower energy), excitation is worthwhile

п 4 σ-bonds $2 s_1 2 p_x^1 2 p_y^1 2 p_z^1$

Hybridization

- \blacksquare Description of methane is still incomplete
	- □ Three s-bond $(H1s - C2p)$
		- $+$ one s-bond (H1s C2s)
	- \Box Cannot explain symmetrical feature of methane molecules

 \blacksquare Hybrid orbital

- Interference between $C2s + C2p$ orbital
- \Box Forming sp³ hybrid orbital

$$
h_1 = s + p_x + p_y + p_z
$$

\n
$$
h_2 = s - p_x - p_y + p_z
$$

\n
$$
h_3 = s - p_x + p_y - p_z
$$

\n
$$
h_4 = s + p_x - p_y - p_z
$$

Hybridization

E Formation of σ -bond in methane

 $\psi = h_1(1) A(2) + h_1(2) A(1)$

sp² hybridization : ethylene

\blacksquare sp² hybridization

$$
h_1 = s + 2^{1/2} p_x
$$

\n
$$
h_2 = s + (\frac{3}{2})^{1/2} p_x - (\frac{3}{2})^{1/2} p_y
$$

\n
$$
h_3 = s - (\frac{3}{2})^{1/2} p_x - (\frac{3}{2})^{1/2} p_y
$$

sp hybridization : acetylene

 \blacksquare sp hybridization

$$
h_1 = s + p_z
$$

$$
h_2 = s - p_z
$$

Molecular Orbital Theory

Molecular Orbital (MO) Theory

 \Box Electrons should be treated as spreading throughout the entire molecule

 \Box The theory has been fully developed than VB theory

■ Approach :

 \Box Simplest molecule (H₂ $+$ ion) \rightarrow complex molecules

The hydrogen molecule-ion

 r_{B1}

B

 \overline{R}

E Hamiltonian of single electron in H_2 +

Attractions between electron and nuclei

1

 r_{A1}

A

Repulsion between the nuclei

Solution : one-electron wavefunction

 \rightarrow Molecular Orbital (MO)

- The solution is very complicated function
- This solution cannot be extended to polyatomic molecules

Linear Combination of Atomic Orbitals (LCAO-MO)

 If an electron can be found in an atomic orbital belonging to atom A and also in an atomic orbital belonging to atom b, then overall wavefuntion is superposition of two atomic orbital :

$$
\psi_{\pm} = N(A \pm B) \qquad \qquad
$$

$$
A = \psi_{H1S_A} = \frac{e^{-r_A/a_0}}{(\pi a_0^3)^{1/2}}
$$

 Linear Combination of Atomic Orbitals (LCO-MO)

$$
A = \psi_{H1S_A} = \frac{e^{-\lambda A/B_0}}{(\pi a_0^3)^{1/2}}
$$

$$
B = \psi_{H1S_B} = \frac{e^{-r_B/a_0}}{(\pi a_0^3)^{1/2}}
$$

- \blacksquare *N* : Normalization factor
- a k Called a σ**-orbital**

Normalization 고려대학교 \int * *d* 1 ψ ψ τ = $\left\{ \int A^2 d\tau + \int B^2 d\tau + 2 \int AB d\tau \right\}$ $\int \psi^* \psi d\tau = N^2 \int A^2 d\tau + \int B^2 d\tau + 2 \int$ * $2d\tau = N^2 \left(\frac{1}{2} d\tau + \frac{1}{2} R^2 d\tau + 2 \left(\frac{1}{2} R^2 d\tau + \frac{1}{2} R^2 d\tau \right) \right)$ $d\tau = N^2$ {| $A^2 d\tau + |B^2 d\tau + 2|$ $AB d\tau$ }= $N^2 (1 + 1 + 2S^2)$ 2 | $ABd\tau$ = $N^2(1+1+2S)$ $= N^{-1}$ | A²d $\tau + |B^2 d\tau + 2|$ ABd τ | $= N^{-1}$ (1+1+ $\psi \psi d\tau = N^2 \left[|A^2 d\tau + |B^2 d\tau + 2| A B d\tau \right]$ $\boldsymbol{\psi}_+$ \int $S = |ABd$ 0.59 τ $= \int AB \, d\tau \approx$ $\Psi_{\pm} = N(A \pm B)$ $=N(A\pm$ $N = 0.56$ / *r a* − *A* 0 $A = \psi_{\mu_1} = \frac{e}{4}$ ψ $=\psi_{\scriptscriptstyle \mu\tau\sigma} \; =$ *H S* 1 $\left(\pi a_{0}^{3}\right) ^{1/2}$ *A* π *a* / *r a* − *B* $\mathbf{0}$ $B = W_{\mu_1}$, $=$ $\frac{e}{4}$ \int * *d* 1 ψ ψ τ ψ = $=\psi_{\scriptscriptstyle \mu\tau\sigma} \; =$ *H S* 1 $\left(\pi a_{0}^{3}\right) ^{1/2}$ *B π a* $\left\{ \int A^2 d\tau + \int B^2 d\tau - 2 \int AB d\tau \right\} = N^2 (1 + 1 - 2S)$ $\int \psi^* \psi d\tau = N^2 \int A^2 d\tau + \int B^2 d\tau - 2 \int$ * $2l = \frac{1}{2}$ $\begin{bmatrix} 2 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ $d\tau = N^2 \{ |A^2 d\tau + |B^2 d\tau - 2 | AB d\tau \} = N^2 (1 + 1 - 2S)$ $= N^{-1}$ | A²d $\tau + |B^2 d\tau - 2|$ ABd τ $\in N^{-1}$ $(1+1 \psi \psi d\tau = N^2 \left[|A^2 d\tau + |B^2 d\tau - 2| \right]$ $\psi_{\scriptscriptstyle -}$ $S = \int AB d\tau \approx 0.59$ $N = 1.10$

LCAO-MO

Amplitude of the bonding orbital in hydrogen molecule-ion

 $r_{\scriptscriptstyle A}$ and $r_{\scriptscriptstyle B}$ are not independent

$$
r_B = \left\{ r_A^2 + R^2 - 2r_A R \cos \theta \right\}^{1/2}
$$

Bonding Orbital

$$
\psi_{+}^{2} = N^{2} \left(\frac{A^{2}}{4} + \frac{B^{2}}{2AB} \right)
$$
\n
$$
+ \left\{ \frac{A}{2} \frac{A}{2AB} \right\}
$$
\n
$$
+ \left\{ \frac{A}{2AB} \frac{B}{2AB} \right\}
$$
\nProbability density)

\nProbability density if the electron were constant.

Pectron were confined to the atomic orbital B

Probability density if the electron were confined to the atomic orbital A

- **Overlap density** \rightarrow **Crucial term**
- Electrons accumulates in the region where atomic orbital overlap and interfere *constructively*.

Bonding Orbital

 The accumulation of electron density between the nuclei put the electron in a position where it interacts strongly with both nuclei

 \rightarrow the energy of the molecule is lower than that of separate atoms **Region of**

Bonding Orbital

- Bonding orbital
- ■ called *l σ orbital*
- σ *electron*

 \blacksquare The energy of 1σ orbital decreases as R decreases However at small separation, repulsion becomes large There is a minimum in potential energy curve

 Re = 130 pm (exp. 106 pm) De = 1.77 eV (exp. 2.6 eV)

Antibonding Orbital

E Linear combination ψ corresponds to a higher energy

 $\psi_-^2 = N^2(A^2 + B^2 - 2AB)$

- Reduction in probability density between the nuclei (-2AB term)
- **E** Called 2σ orbital (often labeled $2\sigma^*$)

Amplitude of antibonding orbital

Antibonding orbital

- The electron is excluded from internuclear region \rightarrow destabilizing
- **The antibonding orbital** is more antibonding than the bonding orbital is bonding

$$
|E_- - E_{H1s}| > |E_+ - E_{H1s}|
$$

Molecular orbital energy diagram

- Target : Many-electron diatomic molecules
- Similar procedure
	- \Box Use H_2 + molecular orbital as the prototype
	- \Box Electrons supplied by the atoms are then accommodated in the orbitals to achieve lowest overall energy
	- \Box Pauli's principle + Hund's maximum multiplicity rule

Hydrogen and He molecules

• **The shape is generally the same as H**

• **The next two electrons can enter 2** σ*** orbital**

• **He 2 is unstable than the individual atoms**

• **Antibond is slightly higher energy than bonding**

• **Two electrons enter 1**σ **orbital**

Hydrogen (H 2)

- **Two electrons enter 1**σ **orbital**
- **Lower energy state than 2 H atoms**

Bond order

■ A measure of the net bonding in a diatomic molecule

 \Box *n* : number of electrons in bonding orbital

 \Box n^* : number of electrons in antibonding orbital

$$
b=\frac{1}{2}(n-n^*)
$$

Characteristics

 \Box The greater the bond order, the shorter the bond

 \Box The greater the bond order, the greater the bond strength

Period 2 diatomic molecules \sim orbital

 Elementary treatments : only the orbitals of valence shell are used to form molecular orbital

O Valence orbitals in period 2 : *2s* and *2p*

 \blacksquare σ -orbital : 2s and 2 p_z orbital (cylindrical symmetry)

$$
\psi = c_{A2s}\psi_{A2s} + c_{B2s}\psi_{B2s} + c_{A2p_z}\psi_{A2p_z} + c_{B2p_z}\psi_{B2p_z}
$$

 \Box From an appropriate choice of c we can form four molecular orbital

Period 2 diatomic molecules \sim orbital

 Because 2s and 2p orbitals have distinctly two different energies, they may be treated separately.

 $\Psi = c_{A2s} \Psi_{A2s} \pm c_{B2s} \Psi_{B2s}$

$$
\psi = c_{A2p_z}\psi_{A2p_z} + c_{B2p_z}\psi_{B2p_z}
$$

Similar treatment can be used \Box 2s orbitals \rightarrow 1 σ and 2 σ^* \Box 2*p*_{*z*} orbitals → 3σ and 4σ^{*}

Period 2 diatomic molecules π orbital

 \rightarrow perpendicular to intermolecular axis \blacksquare $2p_x$, $2p_z$ Overlap may be constructive or distructive \Box \Box \Box Bonding or antibonding π orbital Atom Molecule $4\sigma^4$ \Box \Box Two π _x orbitals + Two π _y orbitals

Period 2 diatomic molecules π orbital

- The previous diagram is based on the assumption that 2s and 2pz orbitals contribute to completely different sets
- \rightarrow In fact, all four atomic orbitals contribute joinlty to the four σ-orbital
- The order and magnitude of energies change :

The variation of orbital energies of period 2 homonuclear diatomics

The overlap integral

 The extent to which two atomic orbitals on different atom overlaps : the overlap integral

$$
S = \int \psi_A^* \psi_B d\tau
$$

- \Box ψ _A is small and ψ _B is large \rightarrow S is small \Box ψ_A is large and ψ_B is small \rightarrow S is small \Box ψ_A and ψ_B are simultaneously large \rightarrow S is
	- large
		- *Is* with same nucleus \rightarrow S=1
		- $2s + 2p_x \rightarrow S = 0$

Structure of homonuclear diatomic molecule

Nitrogen

> $1\sigma^2 2\sigma^{*2} 1\pi^4 3\sigma^2$ $b = 0.5*(2+4+2-2) = 3$

 L ewis Structure $\therefore N \equiv N$:

 \blacksquare Oxygen

 $1\sigma^2 2\sigma^{*2} 3\sigma^2 1\pi^4 2\pi^{2*}$

 $b = 0.5*(2+2+4-2-2) = 2$

last two electrons occupy different orbital : $\pi_{\mathbf{x}}$ and $\pi_{\mathbf{y}}$ (parallel spin)

- \rightarrow angular momentum (s=1)
- \rightarrow Paramagnetic

FR 52 ह्मद्या Quiz 고려대학교 ■ What is spin-orbit coupling?

- ш What is the difference between sigma and pi bond?
- Explain symmetrical structure of methane molecule.

$$
2s_2 2p_x^1 2p_y^1
$$