Applied Statistical Mechanics Lecture Note - 5

Quantum Mechanics - 4

고려대학교 화공생명공학과 강정원

Heteronuclear Diatomic Molecules

■ Molecules formed from two different atoms \Box CO, HCl, ...

 \Box Electron distribution is not evenly shared

 \Box Electron pair to be found closer to one atom than the other \rightarrow energetically favorable

 δ +

Polar bond

■ A covalent bond electron pair is evenly shared

Partial negative charge δ −

Partial positive charge

Polar bonds

 A polar bond consists of two electrons in an orbital**a** nonpolar bond $|c_A| = |c_B|$ **D** polar bond $|c_A| \neq |c_B|$ \Box **1** ionic bond $|c_A| = 0, |c_B| = 1$ ■ Contribution to total orbital \Box lower energy makes large contribution to **bonding orbital** \Box higher energy makes large contribution to **antibonding orbital** $\psi = c_A A + c_B B$

Electronegativity

- **P** Power of an atom to attract to electron to itself
	- \Box Pauling electronegativity

$$
|\chi_A - \chi_A| = 0.102 \left\{ D(A - B) - \frac{1}{2} [D(A - A) + D(B - B)] \right\}^{1/2}
$$

□ Mulliken electronegativity scale

- I : ionization energy
- Eea : electron affinity

$$
\chi_M = \frac{1}{2}(I + E_{ea})
$$

 \Box Relation

$$
\chi_p = 1.35 \chi_m - 1.37
$$

The Variation Principle

More systematic way of discussing bond polarity

■ "Variation Principle"

- \Box If an arbitrary wavefunction is used to calculate the energy, the value calculated is never less than true energy
- Arbitrary wave function \rightarrow trial wave function
- Varying coefficient of trial wavefunction until the lowest energy is reached \rightarrow the best value
- Optimum MO can be built from basis set (the given set of atomic orbitals)

Secular Equation

$$
\psi = c_A A + c_B B
$$

$$
\int \psi^* \psi d\tau = \int (c_A A + c_B B)^2 d\tau
$$

\n
$$
= c_A^2 \int A^2 d\tau + c_B^2 \int B^2 d\tau + 2c_A c_B \int AB d\tau = c_A^2 + c_B^2 + 2c_A c_B S
$$

\n
$$
\int \psi^* H \psi d\tau = \int (c_A A + c_B B) H (c_A A + c_B B) d\tau
$$

\n
$$
= c_A^2 \int A H A d\tau + c_B^2 \int B H B d\tau + c_A c_B \int A H B d\tau + c_A c_B \int B H A d\tau
$$

\n
$$
\alpha_A = \int A H A d\tau \quad \alpha_B = \int B H B d\tau \quad \beta = \int A H B d\tau = \int B H A d\tau
$$

Secular Equation

$$
E = \frac{{c_A}^2 \alpha_A + {c_B}^2 \alpha_B + 2c_A c_B \beta}{c_A^2 + {c_B}^2 + 2c_A c_B S} \qquad \frac{\partial E}{\partial c_A} = 0, \frac{\partial E}{\partial c_B} = 0
$$

$$
(\alpha_A - E)c_A - (\beta - ES)c_B = 0
$$

$$
(\beta - ES)c_A - (\alpha_B - E)c_B = 0
$$

 \blacksquare To solve secular equation, we need to know E of the orbital n E can be found from the solution of secular determinant

$$
\begin{vmatrix} (\alpha_A - E) & (\beta - ES) \\ (\beta - ES) & (\alpha_B - E) \end{vmatrix} = 0
$$

Procedure

$$
\begin{vmatrix}\n(\alpha_A - E) & (\beta - ES) \\
(\beta - ES) & (\alpha_B - E)\n\end{vmatrix} = 0 \quad \text{Find } E
$$
\n
$$
(\alpha_A - E)c_A - (\beta - ES)c_B = 0
$$
\n
$$
(\beta - ES)c_A - (\alpha_B - E)c_B = 0 \quad \text{or} \quad C_A, C_B
$$
\n
$$
\psi = c_A A + c_B B
$$

Small Quiz

■ Find Solution for diatomic molecule when

 $\alpha_{A}^{} = \alpha_{B}^{} = \alpha$

Simple case

$$
\alpha_A = \alpha_B = \alpha
$$

\n
$$
E_{\pm} = \frac{\alpha \pm \beta}{1 \pm S}
$$

\n
$$
E_{+} = \frac{\alpha + \beta}{1 + S} \quad c_A = \frac{1}{\left\{2(1 + S)\right\}^{1/2}} \quad c_B = c_A
$$

\n
$$
E_{-} = \frac{\alpha - \beta}{1 - S} \quad c_A = \frac{1}{\left\{2(1 - S)\right\}^{1/2}} \quad c_B = c_A
$$

$$
\psi_{+} = \frac{A+B}{\{2(1+S)\}^{1/2}}
$$

$$
\psi_{-} = \frac{A-B}{\{2(1-S)\}^{1/2}}
$$

Molecular Orbital for Polyatomic Systems

 The similar method as in diatomic molecules \Box Use more atomic orbitals to construct MO

$$
\psi = \sum_i c_i \psi_i
$$

- \Box Setup secular equation \rightarrow secular determinant \rightarrow solve E \rightarrow find coefficients \rightarrow MO
- Main difference
	- \Box Bond length and bond angle
	- П The shape of molecule can be predicted varying positions of atoms \rightarrow conformation with the lowest energy

The Hückel Approximation

■ Conjugated molecules

 \Box Approximation suggested by Hückel (1931)

 \Box Alteration of single and double bond

 \Box π bond are considered separately from σ bond

ш ^σbonds from a rigid frame work for the shape of molecules

 \Box \Box concentrate on π orbital

Ethene

^π orbital : LCAO of the *C2p* orbitals $\psi = c_A A + c_B B$

$$
\alpha_A = \alpha_B = \alpha
$$

\n
$$
\begin{vmatrix}\n(\alpha - E) & (\beta - ES) \\
(\beta - ES) & (\alpha - E)\n\end{vmatrix} = 0
$$

Hückel approximations

- All overlap integrals are set equal to 0
- H. All resonance integral between non-neighbors are set to zero
- All remaining resonance integrals are set equal $(β)$
- \blacksquare All diagonal elements : α - E
- Off-diagonal elements between neighboring atoms : β
- All other elements : 0

$$
\begin{vmatrix} \alpha - E & \beta \\ \beta - ES & \alpha - E \end{vmatrix} = 0 \qquad E_{\pm} = \alpha \pm \beta
$$

Frontier Orbitals

T Two orbitals

 \Box \Box Bonding orbital : 1π

□. Antibonding orbital : $2\pi^*$

g ground state : $1\pi^2$

Frontier orbitals

> **■Highest Occupied Molecular** Orbital (HOMO) : *1*π

Lowest Unoccupied Molecular Orbital (LUMO) *2* π*

Homework

Perform energy minimization for

 \Box Benzene

 \Box Ethanol

 \Box Water

Acetaldehyde

■ Draw electrostatic potential surface (eplot diagram)