Applied Statistical Mechanics Lecture Note - 6

Molecular Mechanics - Force Field Method

고려대학교 화공생명공학과 강정원

Introduction

Force Field Method vs. Electronic Structure Method

□ Force field method : based on Molecular Mechanics

Electronic structure method : based on Quantum Mechanics

Force Field Method

Problem

- □ Calculating energy for given structure
- □ Finding stable geometry of molecules
 - Energy optimum of saddle point
- Molecules are modeled as atoms held together with bonds
 - "Ball and spring model"
- Bypassing the electronic Schrödinger equation
- Quantum effects of nuclear motions are neglected
- The atom is treated by classical mechanics → Newton's second law of motion

Force Field Methods

Validation of FF methods

- Molecules tend to be composed of units which are structurally similar in different molecules
 - Ex) C-H bond
 - bond length : 1.06 1.10 A
 - stretch vibrations : 2900 3300 /cm
 - Heat of formation for $CH_3 (CH2)_n CH_3$ molecules
 - Almost straight line when plotted against n
- Molecules are composed of structural units

 \rightarrow "Functional groups"

Example MM2 atom types

Туре	Symbol	Description	Туре	Symbol	Description		
1 C		sp ³ -carbon	28	Н	enol or amide		
2	С	sp ² -carbon, alkene	48	Н	ammonium		
3	С	sp ² -carbon, carbonyl, imine	36	D	deuterium		
4	С	sp-carbon	20	lp	lone pair		
22	С	cyclopropane	15	Ś	sulfide (R_2S)		
29	C.	radical	16	S+	sulfonium (R_3S^+)		
30	C+	carbocation	17	S	sulfoxide (R_2SO)		
38	С	sp ² -carbon, cyclopropene	18	S	sulfone (R_2SO_2)		
50	С	sp ² -carbon, aromatic	42	S	sp ² -sulfur, thiophene		
56	С	sp ³ -carbon, cyclobutane	11	F	fluoride		
57	С	sp ² -carbon, cyclobutene	12	Cl	chloride		
58	С	carbonyl, cyclobutanone	13	Br	bromide		
67	С	carbonyl, cyclopropanone	14	onol I ad	iodide		
68	С	carbonyl, ketene	26	В	boron, trigonal		
71	С	ketonium carbon	27	В	boron, tetrahedral		
8	N	sp ³ -nitrogen	19	Si	silane		
9	Ν	sp ² -nitrogen, amide	25	Р	phosphine (R_3P)		
10	N	sp-nitrogen	60	Р	phosphor, pentavalent		
37	N	azo or pyridine $(-N=)$	51	He	helium		
39	N+	sp ³ -nitrogen, ammonium (R_4N^+)	52	Ne	neon		
40	Ν	sp ² -nitrogen, pyrrole	53	Ar	argon		
43	N	azoxy (-N=N-O)	54	Kr	krypton		
45	Ν	azide, central atom	55	Xe	xenon		
46	Ν	nitro $(-NO_2)$	31	Ge	germanium		
72	Ν	imine, oxime $(=N-)$	32	Sn	tin		
6	0	sp ³ -oxygen	33	Pb	lead (R ₄ Pb)		
7	0	sp ² -oxygen, carbonyl	34	Se	selenium		
41	0	sp ² -oxygen, furan	35	Te	tellurium		
47	0-	carboxylate	59	Mg	magnesium		
49	0	epoxy	61	Fe	iron(II)		
69	0	amine oxide	62	Fe	iron(III)		
70	0	ketonium oxygen	63	Ni	nickel(II)		
5	Н	hydrogen, except on N or O	64	Ni	nickel(III)		
21	Н	alcohol (OH)	65	Со	cobalt (II)		
23	Н	amine (NH)	66	Со	cobalt (III)		
24	Н	carboxyl (COOH)			The harmonication		

The Force Field Energy

$$E_{\rm FF} = E_{\rm str} + E_{\rm bend} + E_{\rm tor} + E_{\rm vdw} + E_{\rm el} + E_{\rm cross}$$

Simplest form : Harmonic Oscillator $E_{str}(R^{AB} - R_0^{AB}) = k^{AB}(R^{AB} - R_0^{AB})^2 = k^{AB}(\Delta R^{AB})^2$

The stretch energy

- The harmonic form is the simplest possible form
- When the bond is stretched to longer r, the predicted energy is not realistic
- Polynomial expansion

 $E_{str}(\Delta R^{AB}) = k_2^{AB}(\Delta R^{AB})^2 + k_3^{AB}(\Delta R^{AB})^3 + k_4^{AB}(\Delta R^{AB})^4 + \dots$

- □ More parameters
- □ The limiting behavior is not correct for some cases (3rd order, 5th order,...)
- Special care needed for optimization (negative energy for long distance)

자유 청의

고려대학교

The stretch energy

The Morse Potential $E_{str}(\Delta R^{AB}) = D[1 - e^{\alpha \Delta R}]^2$ $\alpha = \sqrt{k/2D}$

D: Dissociation energy

Accurate actual behavior

Problem

- More computation time evaluating exponential term
- Starting from poor geometry, slow convergence

Popular method : nth order expansion of the Morse Potential

$$E_{str}(\Delta R^{AB}) = k^{AB}(\Delta R^{AB})^{2} [1 - \alpha(\Delta R^{AB}) + \frac{7}{12}\alpha^{2}(\Delta R^{AB})^{2}]$$

The Bending Energy

- E_{bend} : The energy required for bending an angle formed by three atoms A-B-C
- Harmonic Approximation

$$E_{bend}(\theta^{ABC} - \theta_0^{ABC}) = k^{ABC}(\theta^{ABC} - \theta_0^{ABC})^2$$

Improvement can be observed when more terms are included

Adjusting higher order term to fixed fraction

For most applications, simple harmonic approximation is quite adequate
 MM3 force field : 6th term

The bending energy

- Angels where the central atom is di- or trivalent (ethers, alcohols, sulfiteds, amines), represents a special problem
 - □ an angle of 180 degree → energy maximum

 \Box at least order of three

- Refinement over a simple harmonic potential clearly improve the overall performance.
- They have little advantage in the chemically important region (10 kcal/mol above minimum)

The out-of-plane bending energy

• sp^2 -hybridized atoms (ABCD)

- there is a significant energy penalty associated with making the center pyramidal
- □ ABD, ABD, CBD angle distortion should reflect the energy cost associated with pyramidization

$$E_{oop}(\boldsymbol{\chi}_B) = k^B (\boldsymbol{\chi}_B)^2$$

The torsion energy

- Angle of rotation around B-C bond for four atoms sequence A-B-C-D
- Difference between stretch and bending energy
 - $\square The energy function must be periodic win the angle <math>\omega$
 - The cost of energy for distortion is of low
 - Large deviation from minimum can occur
- Fourier series expansion

$$E_{tors}(\omega) = \sum_{n=1} V_n \cos(n\omega)$$

The torsion energy

$$E_{tors}(\omega) = \sum_{n=1}^{\infty} V_n \cos(n\omega)$$

Depending on the situation some of V_n terms are set to 0

 \square *n*=1 : periodic by 360 degree

 \square *n*=2 : periodic by 170 degree

 \square *n*=3 : periodic by 120 degree

Ethane : three minima and three maxima

• n = 3, 6, 9, ... can have V_n

The van der Waals energy

- E_{vdw} : energy describing the repulsion and attraction between atoms : non-bonded energy
 - Interaction energy not related to electrostatic energy due to atomic charges
 - Repulsion and attraction
 - Small distance, very repulsive \rightarrow overlap of electron cloud
 - Intermediate distance, slight attraction \rightarrow electron correlation
 - motion of electrons create temporarily induced dipole moment

Van der Waals Attraction

1930, London

- ☐ "Dispersion" or "London" force
- Correlation of electronic fluctations

Explained attraction as induced dipole interaction

$$E_{vdw}^{attr}(R) \propto \frac{C}{R^6} + O(R^{-8})$$

induced dipole - dipole interaction $\propto \frac{1}{R^6}$ induced dipole - quadrupole interaction $\propto \frac{1}{R^8}$ induced quadrupole - quadrupole interaction $\propto \frac{1}{R^{10}}$

- Overlap of electron cloud
- Theory provide little guidance on the form of the model
- Two popular treatment
 - Inverse power
 - Typically n = 9 12

$$E_{vdw}^{rep}(R) \propto \frac{C}{R^n}$$

- Exponential
 - Two parameters A, B

 $E_{vdw}^{rep}(R) \propto A e^{-BR}$

Van der Waals Energy

Lennard-Jones potential

$$E_{LJ}(R) = \varepsilon \left[\left(\frac{R_0}{R} \right)^{12} - 2 \left(\frac{R_0}{R} \right)^6 \right]$$

Exp-6 potential

• Also known as "Buckingham" or "Hill" type potential

자유 정요

고려대학교

$$E_{vdw}(R) = Ae^{-BR} - \frac{C}{R^6} = \varepsilon \left[\frac{6}{\alpha - 6} e^{\alpha(1 - R/R_0)} - \frac{6}{\alpha - 6} \left(\frac{R_0}{R} \right)^6 \right]$$

Comparison

Morse Potential

Problems

 $E_{str}(\Delta R^{AB}) = D[1 - e^{\alpha \Delta R}]^2$ $\alpha = \sqrt{k/2D}$

Inversion Overestimating repulsion

Why LJ potential is preferred ?

- Multiplications are much faster than exponential calculation
- Parameters are meaningful than the other models
- Diatomic parameters

$$\Delta R_0^{AB} = \frac{1}{2} (R_0^A + R_0^B)$$
$$\varepsilon^{AB} = \sqrt{\varepsilon^A + \varepsilon^B}$$

The electrostatic Energy

- Iternal distribution of electrons
 positive and negative part of molecule
 long range force than van der Waals
- Two modeling approaches
 - Point charges

Bond Dipole Description

Point charge method

- Assign Columbic charges to several points of molecules
- Total charge sum to charges on the molecule
- Atomic charges are treated as fitting parameters
 Obtained from electrostatic potential calculated by electronic structure method (QM)

$$E_{el}(R^{AB}) = \frac{Q_A Q_B}{\varepsilon R^{AB}}$$

Bond Dipole description

Interaction between two dipole

$$E_{el}(R^{AB}) = \frac{\mu_A \mu_B}{\varepsilon (R^{AB})^3} (\cos \chi - 3\cos \alpha_A \cos \alpha_B)$$

- MM2 and MM3 uses bond dipole description
- Point charge vs. Bond Dipole model
 - There is little difference if properly parameterized
 - □ The atomic charge model is easier to parameterize by fitting an electronic wave function → preferred by almost all force field

Multibody interaction

- Unlike van der Waals interaction, the three body interaction is quite significant for polar species
- Two method
 - Explicit multibody interaction
 - Axilrod Teller

$$u(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \frac{3}{2} \frac{E\alpha_1 \alpha_2 \alpha_3}{r_{12}^3 r_{23}^3 r_{13}^3} (3\cos\theta_1 \cos\theta_2 \cos\theta_3 + 1)$$

- Atom Polarization
 - Electrostatic interaction = (Intrisic contribution) + (dipolar term arising from the other atomic charges)
 - Solved iterative self-consistent calculation

Cross terms

Bonds, angles and torsions are not isolated They couple with one another Example Stretch/bend coupling Stretch/stretch coupling Bend/bend coupling Stretch/torsion coupling Bend/torsion coupling Bend/torsion/bend coupling ...

Small rings

Small rings present a problem

- their equilibrium angles are very different from those of their acyclic cousins
- Methods
 - □ Assign new atom types
 - Adding sufficient parameters in cross terms

Conjugated systems

■ Butadiene (C=C-C=C)

- □ Same set of parameters are used for all carbon atoms
- Bond length of terminal and central bonds are different (1.35 A and 1.47 A)
- Delocalization of pi-electrons in the conjugated system

Approaches

- □ Identifying bond combination and use specialized parameters
- Perform simple electronic structure calculation
 - Implemented in MM2 / MM3 (MMP2 and MMP3)
 - Electronic structure calculation method (Pariser-Pople-Parr (PPP) type) : Extended Hückel calculation
 - Requires additional second level of iteration in geometry optimization

If the system of interest contains conjugation, a FF which uses the parameter replacement is chosen, the user should check that the proper bond length and reasonable rotation barrier !

Comparing Energies of Different Molecules

- The numerical value of force-field energy has no meaning !
 - □ Zero point energy has been chosen for convenienece
 - □ It is inconsequential for comparing energies of different conformation
 - \Box E_{FF} : "steric energy"
- Heat of formation
 - □ Bond dissociation energy for each bond type
 - □ To achieve better fit, parameters may also be assigned to larger units (groups : CH_3 -,...)

$$\Delta H_{f} = E_{FF} + \sum_{bonds} \Delta H_{AB} + \sum_{groups} \Delta H_{G}$$

- MM2/MM3 attemped to parameterize heat of formation
- Other force fields are only concerned with producing geometries

Force Field Parameterization

- Numerical Values of parameters
- Example : MM2 (71 atom types)
 - □ For one parameters at least 3-4 independent data are required
 - □ Require order of 10^7 independent experimental data → Impossible
 - □ Rely on electronic structure calculation ("Class II" force field)

Term	Estimated	Actual	Calc. Basis
E_{vdw}	142	142	2*71 =142
<i>E</i> _{str}	900	290	(30*30/2)*2
E_{bend}	27,000	824	(30*30*30/2)*2
E _{tors}	1,215,00	2,466	(30*30*30*30/2)*3

Force Field Parameterization

There are large number of possible compounds for which there are no parameters

The situation is not as bad as it would appear

- Although about 0.2 % of possible torsional constants have been parameterized,
- About 20 % of 15 million known compound can be modeled by MM2

Universal Force Field

- Many atom type, lack of sufficient reference data → Development of Universal Force Field (UFF)
- Derive di-, tri-, tetra- atomic parameters from atomic constant (Reduced parameter form)

Atomic properties : atom radii, ionization potential, electronegativity, polarizability, ...

- In principle, capable of covering molecules composed of elecments from the whole periodic table
- Less accurate result presently $\dots \rightarrow$ likely to be improved

Force Fields...

Table 2.3	Comparison of	f functional	forms	used in	n common	force	fields.	The	torsional	energ
$E_{\rm tors}$, is in	all cases given	as a Fourier	r series	s in the	torsional	angle				

Force Field	Types	E _{str}	Ebend	E _{oop}	E _{vdw}	E _{el}	E _{cross}	Molecules
EAS	2	P2	P3	none	Exp6	none	none	alkanes
EFF	2	P4	P3	none	Exp6.	none	ss,bb,sb, st,btb	alkanes
MM2	71	P3	P2+6	P2	Exp6	dipole	sb	general
MM3	153	P4	P6	P2	Exp6	dipole or charge	sb,bb,st	general (all elements)
MM4	3	P6	P6	imp.	Exp6	charge	ss,bb,sb, tt,st,tb,btb	hydrocarbons
CVFF	53	P2 or Morse	P2	P2	6-12	charge	ss,bb,sb, btb	general
CFF 91/93/95	48	P4	P4	P2	6-9	charge	ss,bb,st, sb,bt,btb	general
TRIPOS	31	P2	P2	P2	6-12	charge	none	general
MMFF	99	P4	P3	P2	7-14	charge	sb	general
COSMIC	25	P2	P2		Morse	charge	none	general
DREIDING	G 37	P2 or Morse	P2(cos)	P2(cos)	6–12 or Exp.–6	charge	none	general
AMBER	41	P2	P2	imp.	6–12 10–12	charge	none	proteins, nucleic acids carbohydrate
OPLS	41	P2	P2	imp.	6-12	charge	none	proteins, nucleic acids carbohydrate
CHARMM	29	P2	P2	imp.	6-12	charge	none	proteins
GROMOS		P2	P2	P2(imp.)	6-12	charge	none	proteins, nucleic acids carbohydrate
ECEPP		fixed	fixed	fixed	6-12 10-12	charge	none	proteins
MOMEC		P2	P2	P2	Exp6	none	none	metal coordination
SHAPES		P2	$\cos(n\theta)$	imp.	6-12	charge	none	metal coordination
ESFF	97	Morse	P2(cos)	P2	6-9	charge	none	all elements
UFF	126	P2 or Morse	$\cos(n\theta)$	imp.	6-12	charge	none	all elements

Notation: Pn: Polynomial of order n; Pn(cos): polynomial of order n in cosine to the angle; $cos(n\theta)$: Four N term(s) in cosine to the angle; Exp.-6: exponential $+R^{-6}$; n-m: $R^{-n} + R^{-m}$; fixed: not a variable; im C improper torsional angle; ss: stretch-stretch; bb: bend-bend; sb: stretch-bend; st: stretch-torsional; bs; bend-torsional; tt: torsional-torsional; btb: bend-torsional-bend.

(continue B

T