Applied Statistical Mechanics Lecture Note - 10

Basic Statistics and Monte-Carlo Method -2

고려대학교 화공생명공학과 강정원

Table of Contents

- 1. General Monte Carlo Method
- 2. Variance Reduction Techniques
- 3. Metropolis Monte Carlo Simulation

1.1 Introduction

Monte Carlo Method

- Any method that uses random numbers
- **Random sampling the population**
- Application
 - Science and engineering
 - Management and finance
- For given subject, various techniques and error analysis will be presented
- Subject : evaluation of definite integral

$$I = \int_{a}^{b} \rho(x) dx$$

1.1 Introduction

- Monte Carlo method can be used to compute integral of any dimension *d* (*d*-fold integrals)
- Error comparison of d-fold integrals
 - \Box Simpson's rule,... $E \propto N^{-1/d}$

□ Monte Carlo method $E \propto N^{-1/2}$ → purely statistical, not rely on the dimension !

 \Box Monte Carlo method WINS, when d >> 3

• Evaluation of a definite integral

$$I = \int_{a}^{b} \rho(x) dx$$

 $h \ge \rho(x)$ for any x

Probability that a random point reside inside the area

$$r = \frac{I}{(b-a)h} \approx \frac{N'}{N}$$

□ N : Total number of points

 \square N' : points that reside inside the region

$$I \approx (b-a)h\frac{N'}{N}$$

variance : σ^2

Error Analysis of the Hit-or-Miss Method □ It is important to know how accurate the result of simulations are \Box The rule of 3σ 's Identifying Random Variable $\overline{X} = \frac{1}{N} \sum_{n=1}^{N} X_n$ \Box From central mean theorem , X is normal variable in the limit of large N each X_n X mean value: μ mean value: μ

variance : σ^2 / N

- Sample Mean : estimation of actual mean value (μ) $\mu' = \frac{1}{N} \sum_{n=1}^{N} x_n$ $\mu' = \frac{1}{N} \sum_{n=1}^{N} x_n = r = \frac{N'}{N}$ $\frac{x \quad 0 \quad 1}{p(x) \quad r \quad 1-r}$ $\sum_{n=1}^{N} x_n = N'$
- Accuracy of simulation \rightarrow the most probable error $\frac{0.6745\sigma}{\sqrt{N}} \qquad \qquad \sigma = \sqrt{V(X)}$

Estimation of error

$$\frac{0.6745\sigma}{\sqrt{N}} \qquad \sigma = \sqrt{V(X)}$$

 \Box We do not know exact value of s, m

□ We can also estimate the variance and the mean value from samples ...

$$\sigma'^{2} = \frac{1}{N-1} \sum_{n=1}^{N} (x_{n} - \mu')^{2}$$

■ For present problem (evaluation of integral) exact answer
(I) is known → estimation of error is,

 $V(X) = E(X^{2}) - [E(X)]^{2}$

$$E(X) = \sum xp(x) = 1 \times r + 0 \times (1 - r) = r = \mu$$

$$E(X^{2}) = \sum x^{2} p(x) = 1 \times r + 0 \times (1 - r) = r$$

$$V(X) = r - r^{2} = (1 - r)r = \sigma^{2}$$

$$\sigma = \sqrt{(1 - r)r}$$

$$I = r(a-b)h = \mu(a-b)h$$

$$I_{error}^{HM} = \frac{0.6745\sigma}{\sqrt{N}} = 0.6745 \times (b-a)h \sqrt{\frac{r(1-r)}{N}} = 0.6745 \sqrt{\frac{I((b-a)h - I)}{N}}$$

• $\rho(x)$ is a continuous function in x and has a mean value;

$$<\rho>=\frac{\int_{a}^{b}\rho(x)dx}{\int_{a}^{b}dx}=\frac{1}{b-a}\int_{a}^{b}\rho(x)dx$$
$$\therefore I=\int_{a}^{b}\rho(x)dx=(b-a)<\rho>$$
$$<\rho>=\frac{1}{N}\sum_{n=1}^{N}\rho(x_{n})$$

 $x_n = (b-a)u_n + a$ $u_n =$ uniform random variable in [0,1]

Error Analysis of Sample Mean Method

□ Identifying random variable

$$\overline{Y} = \frac{1}{N} \sum_{n=1}^{N} Y_n$$
$$\mu_{\overline{Y}} = \langle \rho \rangle \approx \frac{1}{N} \sum_{n=1}^{N} y_n = \frac{1}{N} \sum_{n=1}^{N} \rho(x_n)$$

□ Variance

$$V(\rho) = \langle \rho^2 \rangle - [\langle \rho \rangle]^2 \qquad \langle \rho^2 \rangle = \frac{1}{N} \sum_{n=1}^N \rho(x_n)^2$$

$$I_{error}^{SM} = 0.6745\sigma = (b-a) \times 0.6745 \sqrt{\frac{V(x)}{N}}$$

■ If we know the exact answer,

$$I_{error}^{SM} = 0.6745 \sqrt{\frac{L \int_{a}^{b} \rho(x)^{2} dx - I^{2}}{N}}$$

QUIZ 고려대학교 Compare the error for the integral $I = \int_{0}^{\pi/2} \sin x \, dx = -\cos x \Big|_{0}^{\pi/2} = 1$ using HM and SM method $I_{error}^{HM} = \frac{0.6745\sigma}{\sqrt{N}} = 0.6745 \times (b-a)h_{\sqrt{\frac{r(1-r)}{N}}} = 0.6745\sqrt{\frac{I((b-a)h-I)}{N}}$ $I_{error}^{SM} = 0.6745 \sqrt{\frac{L \int_{a}^{b} \rho(x)^{2} dx - I^{2}}{N}}$

Example : Comparison of HM and SM

Evaluate the integral

$$I = \int_{0}^{\pi/2} \sin x dx = -\cos x \Big|_{0}^{\pi/2} = 1$$

$$I_{error}^{HM} = 0.6745 \sqrt{\frac{I((b-a)h-I)}{N}} = 0.6745 \sqrt{\frac{1((\pi/2-0)\times 1-1)}{N}} = 0.6745 \sqrt{\frac{\pi/2-1}{N}}$$

$$<\rho >= I/(b-a) = 2/\pi$$

$$<\rho^{2} >= \frac{1}{b-a} \int_{0}^{\pi/2} \sin^{2} x dx = 1/2$$

$$V(\rho) = \frac{1}{2} - \left(\frac{2}{\pi^{2}}\right)$$

$$I_{error}^{SM} = 0.6745(b-a) \sqrt{\frac{V'}{N}} = 0.6745 \sqrt{\frac{(\pi^{2}/4)(1/2-4/\pi^{2})}{N}} = 0.6745 \sqrt{\frac{\pi^{2}/8-1}{N}}$$

Example : Comparison of HM and SM

■ Comparison of error

■ No of evaluation having the same error

2.1 Variance Reduction Technique - Introduction

- Monte Carlo Method and Sampling Distribution
 - □ Monte Carlo Method : Take values from random sample
 - □ From central limit theorem,

$$\overline{\mu} = \mu$$
 $\overline{\sigma}^2 = \sigma^2 / N$

□ 3s rule

$$P(\mu - 3\overline{\sigma} \le \overline{X} \le \mu - 3\overline{\sigma}) \approx 0.9973$$

□ Most probable error

$$Error \approx \pm \frac{0.6745\sigma}{\sqrt{N}}$$

Important characteristics

Error $\propto 1/\sqrt{N}$ *Error* $\propto \sigma$

2.1 Variance Reduction Technique - Introduction

Reducing error

- \square *100 samples reduces the error order of 10
- \Box Reducing variance \rightarrow Variance Reduction Technique
- The value of variance is closely related to how samples are taken
 - □ Unbiased sampling
 - Biased sampling
 - More points are taken in important parts of the population

2.2 Motivation of Variance Reduction Technique

If we are using sample-mean Monte Carlo Method
 □ Variance depends very much on the behavior of p(x)
 p(x) varies little → variance is small
 p(x) = const → variance=0
 ■ Evaluation of a integral

$$I' = (b-a)\mu_{\overline{Y}} = \frac{b-a}{N} \sum_{n=1}^{N} \rho(x_n)$$

 \Box Near minimum points \rightarrow contribute less to the summation

 \Box Near maximum points \rightarrow contribute more to the summation

 \Box More points are sampled near the peak \rightarrow "importance sampling strategy"

- Variance Reduction for Hit-or-Miss method
- In the domain [a,b] choose a comparison function

$$w(x) \ge \rho(x)$$
$$W(x) = \int_{-\infty}^{x} w(x) dx$$
$$A = \int_{a}^{b} w(x) dx$$
$$Au = w(x) \longrightarrow x = W^{-1}(Au)$$

Points are generated on the area under w(x) function
 Random variable that follows distribution w(x)

Points lying above $\rho(x)$ is rejected

$$y_n = w(x_n)u_n$$
$$q_n = \begin{pmatrix} 1 & \text{if } y_n \le \rho(x_n) \\ 0 & \text{if } y_n > \rho(x_n) \end{pmatrix}$$

 $I \approx A \frac{N'}{N}$

r = I / A

Error Analysis

$$E(Q) = r, \qquad V(Q) = r(1-r)$$

I = Ar = AE(Q)

 $I_{error}^{RJ} \approx 0.67 \sqrt{\frac{I(A-I)}{N}}$ Hit or Miss method A = (b-a)hError reduction

 $A \rightarrow I$ then Error $\rightarrow 0$

$$I_{error}^{RJ} \approx 0.67 \sqrt{\frac{I'(A-I')}{N}}$$

■ Basic idea

- Put more points near maximum
- Put less points near minimum
- \blacksquare F(x) : transformation function (or weight function_

$$F(x) = \int_{-\infty}^{x} f(x) dx$$
$$y = F(x)$$
$$x = F^{-1}(y)$$

if we choose $f(x) = c\rho(x)$, then variance will be small The magnitude of error depends on the choice of f(x)

$$I = \int_{a}^{b} \gamma(x) f(x) dx = \langle \gamma \rangle_{f}$$

Estimate of error

$$I = \langle \gamma \rangle_f \approx \frac{1}{N} \sum_{n=1}^N \gamma(x_n)$$

$$I_{error} = 0.67 \sqrt{\frac{V_f(\gamma)}{N}}$$

$$V_f(\gamma) = \langle \gamma^2 \rangle_f - (\langle \gamma \rangle_f)^2$$

$$I_{error}^{IS} = 0.67 \sqrt{\frac{\langle \gamma^2 \rangle_f - I^2}{N}}$$

D 고려대학교

3. Metropolis Monte Carlo Method and Importance Sampling

Average of a property in Canonical Ensemble

$$< A >_{NVT} = \frac{\int A(\mathbf{r}^{N}) \exp(-U(\mathbf{r}^{N})/kT) d\mathbf{r}^{N}}{\int \exp(-U(\mathbf{r}^{N})/kT) d\mathbf{r}^{N}}$$
$$= \int \frac{\exp(-U(\mathbf{r}^{N})/kT)}{Z(\mathbf{r}^{N})} A(\mathbf{r}^{N}) d\mathbf{r}^{N}$$
$$= \int \mathcal{N}(\mathbf{r}^{N}) A(\mathbf{r}^{N}) d\mathbf{r}^{N}$$

Probability

3. Metropolis Monte Carlo Method and Importance Sampling

Create n_i random points in a volume \mathbf{r}_i^N such that

$$n_{i} = \mathcal{N}(\mathbf{r}_{i}^{N})L$$
$$< A >_{NVT} = \frac{1}{L} \sum_{trials} n_{i} A(\mathbf{r}^{N})$$

■ P

Problem : How we can generate n_i random points according to $\mathcal{N}(\mathbf{r}_i^N)$?

We cannot use inversion method

Use Markov chain with Metropolis algorithm

3. Metropolis Monte Carlo Method and Importance Sampling

- Markov chain :Sequence of stochastic trials satisfies few some conditions
 - Stochastic process that has no memory
 - Selection of the next state only depends on current state, and not on prior state
 - \Box Process is fully defined by a set of transition probabilities π_{ii}

 π_{ij} = probability of selecting state *j* next, given that presently in state *i*. Transition-probability matrix Π collects all π_{ij}

Markov Chain

■ Notation

 $\Box \text{ Outcome } \rho$

 \Box Transition matrix π

Example

□ Reliability of a computer

- if it is running 60 % of running correctly on the next day
- if it is down it has 80 % of down on the next day

$$\boldsymbol{\pi} = \begin{pmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{pmatrix}$$

Markov Chain

$$\rho^{(1)} = (0.5 \quad 0.5)$$

$$\rho^{(2)} = \rho^{(1)}\pi = (0.45 \quad 0.55)$$

$$\rho^{(3)} = \rho^{(2)}\pi = \rho^{(1)}\pi^2 = (0.435 \quad 0.565)$$

$$\rho = \lim_{\tau \to \infty} \rho^{(1)}\pi^{\tau} = (0.4286 \quad 0.5714) -$$

limiting behavior always converges to a certain value independent of initial condition

$$\rho \pi = \rho$$
 $\sum_{m} \rho_{m} \pi_{mn} = \rho_{n}$

 $\sum \pi_{mn} = 1$ Stochastic matrix : sum of the probability should be 1

Features

п

- Every state can be eventually reached from another state
- The resulting behavior follows a certain probability