
Basic Statistics and 
Monte-Carlo Method -2

고려대학교

화공생명공학과

강정원

Applied Statistical Mechanics 
Lecture Note - 10



Table of Contents 

1. General Monte Carlo Method
2. Variance Reduction Techniques 
3. Metropolis Monte Carlo Simulation 



1.1 Introduction

 Monte Carlo Method 
 Any method that uses random numbers 
 Random sampling the population 
 Application

• Science and engineering
• Management and finance 

 For given subject, various techniques and error analysis 
will be presented 

 Subject : evaluation of definite integral 
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1.1 Introduction

 Monte Carlo method can be used to compute integral of 
any dimension d (d-fold integrals)

 Error comparison of d-fold integrals 
 Simpson’s rule,…   
 Monte Carlo method 

Monte Carlo method WINS, when d >> 3 

dNE /1−∝
2/1−∝ NE purely statistical, 

not rely on the dimension !



1.2 Hit-or-Miss Method

 Evaluation of a definite integral

 Probability that a random point reside inside 
the area 

 N : Total number of points
 N’ : points that reside inside the region
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1.2 Hit-or-Miss Method
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Start

Set N : large integer

N’ = 0 

Choose a point x in [a,b]

Choose a point y in [0,h]

if [x,y] reside inside then N’ = N’+1

I  = (b-a) h (N’/N)

End

Loop
N times
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1.2 Hit-or-Miss Method

 Error Analysis of the Hit-or-Miss Method
 It is important to know how accurate the result of simulations are
 The rule of 3σ’s 

 Identifying Random Variable

 From central mean theorem ,      is normal variable in the limit of 
large N 
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1.2 Hit-or-Miss Method

 Sample Mean  : estimation of actual mean value (μ)

 Accuracy of simulation  the most probable error
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1.2 Hit-or-Miss Method

 Estimation of error 

 We do not know exact value of s , m 
 We can also estimate the variance and the mean value from 

samples …
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1.2 Hit-or-Miss Method

 For present problem (evaluation of integral) exact answer  
(I) is known  estimation of error is, 
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1.3 Sample Mean Method

 ρ(x) is a continuous function in x and has a mean value ; 
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1.3 Sample Mean Method

 Error Analysis of Sample Mean Method 
 Identifying random variable

 Variance  
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1.3 Sample Mean Method

 If we know the exact answer, 

N
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1.3 Sample Mean Method
Start

Set N : large integer

s1 = 0, s2 = 0 

xn = (b-a) un + a 

yn = ρ(xn)

s1 = s1 + yn , s2 = s2 + yn
2

Estimate mean  μ’=s1/N
Estimate variance V’ = s2/N – μ’2

End

Loop
N times
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QUIZ

 Compare the error for the integral 

using HM and SM method 
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Example : Comparison of HM and SM

 Evaluate the integral 
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Example : Comparison of HM and SM

 Comparison of error 

 No of evaluation having the same error
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2.1 Variance Reduction 
Technique - Introduction

 Monte Carlo Method and Sampling Distribution
 Monte Carlo Method : Take values from random sample 
 From central limit theorem, 

 3s rule

 Most probable error

 Important characteristics
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2.1 Variance Reduction 
Technique - Introduction

 Reducing error 
 *100 samples reduces the error order of 10 
 Reducing variance  Variance Reduction Technique

 The value of variance is closely related to how samples are 
taken
 Unbiased sampling
 Biased sampling

• More points are taken in important parts of the population



2.2 Motivation of Variance 
Reduction Technique
 If we are using sample-mean Monte Carlo Method

 Variance depends very much on the behavior of ρ(x)
ρ(x) varies little  variance is small
ρ(x) = const  variance=0

 Evaluation of a integral

 Near minimum points  contribute less to the summation
 Near maximum points  contribute more to the summation

 More points are sampled near the peak ”importance sampling strategy”
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2.3 Variance Reduction using 
Rejection Technique

 Variance Reduction for Hit-or-Miss method
 In the domain [a,b] choose a comparison function

 Points are generated on the area under w(x) function
 Random variable that follows distribution w(x)

dxxwA

dxxwxW

xxw

b

a

x




=

=

≥

∞−

)(

)()(

)()( ρ

)(xwAu = )(1 AuWx −=
a b

w(x)

X

X

X
X

X

O

O

OO

O

O

O

ρ(x)



2.3 Variance Reduction using 
Rejection Technique

 Points lying above ρ(x) is rejected
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2.3 Variance Reduction using 
Rejection Technique

 Error Analysis
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2.3 Variance Reduction using 
Rejection Technique

Start

Set N : large integer

N’ = 0 

Generate u1,  x= W-1(Au1)

Generate u2, y=u2 w(x)

If y<=  f(x) accept value N’ = N’+1
Else : reject value

I  = (b-a) h (N’/N)

End

Loop
N times
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2.4 Importance Sampling 
Method

 Basic idea
 Put more points near maximum
 Put less points near minimum 

 F(x) : transformation function (or weight function_
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2.4 Importance Sampling 
Method
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if we choose f(x) = cρ(x) ,then variance will be small
The magnitude of error depends on the choice of f(x)

f

b

a
dxxfxI >=<=  γγ )()(



2.4 Importance Sampling 
Method

 Estimate of error
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2.4 Importance Sampling 
Method

Start

Set N : large integer

s1 = 0 , s2 = 0

Generate xn according to f(x)

γn = ρ (xn) / f ( xn)

Add γn to s1
Add γn to s2

I ‘ =s1/N , V’=s2/N-I’2

End

Loop
N times
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3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Average of a property in Canonical Ensemble
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3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Create ni random points in a volume ri
N such that

 Problem : How we can generate ni random points 
according to  
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Use Markov chain with Metropolis algorithm

We cannot use inversion method



3. Metropolis Monte Carlo  Method 
and Importance Sampling

 Markov chain  :Sequence of stochastic trials satisfies few 
some conditions
 Stochastic process that has no memory
 Selection of the next state only depends on current state, and not 

on prior state
 Process is fully defined by a set of transition probabilities πij

πij = probability of selecting state j next, given that presently in state i.
Transition-probability matrix Π collects all πij



Markov Chain

 Notation 
 Outcome 
 Transition matrix 

 Example 
 Reliability of a computer

• if it is running 60 % of running correctly on the next day
• if it is down it has 80 % of down on the next day
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Markov Chain
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Features
- Every state can be eventually reached from another state
- The resulting behavior follows a certain probability


