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e Hydrogen bonding
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Steric - hard spheres
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Figure2.1 The hard-sphere phase diagram. Below volume fraction ¢ < ¢; = 0.494, the suspension
is a disordered fluid. Between ¢; = 0.494 and ¢, = 0.545, there is coexistence of this disordered The hard s P here
phase with a colloidal crystalline phase with FCC (or HCP) order; the colloidal crystalline phase is

the equilibrium one up to the maximum close-packing limit of ¢, = 0.74. Nonequilibrium colloidal C rystal t Fansi t 10N IS

“glassy” behavior can also occur between ¢, = 0.58 and the limit of random close packing at

¢wep = 0.64. (From Poon and Pusey, fig. 5, with kind permission of Kluwer Academic Publishers, d r i Ve n by e ntro py
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Figure 2.2. In (a) and (b), the same number of spheres of the same size are packed into the
same space. The disordered sphere packing in (a) can create more “free volume” by ordering into a
regular packing in (b), thereby creating volume entropy while losing configurational entropy (after
Lekkerkerker, unpublished). (From Poon and Pusey, fig. 4, with kind permission of Kluwer Academic
Publishers, Copyright 1995.)
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Steric — nematic phase

The degree of orientation order is described
by an orientational order parameter S

s=3(cos?0)-1  ()=[wwd=[ [T-pdgsinate
Onsager theory

Vi () = Vo () = U kaT [y (w')sin(u’,u)du”

w(u) = Ce Ven /KT Boltzmann distribution

Maier-Saupe theory

Vi () =V (u) = const - 35 ucuu:S S =(uu)- 143

Can be solved by a self-consistent calculation



Steric — freely jointed chain

Figure 2.8 Random walk formed from 1000 links.
(From Treloar, copyright © 1975 by Oxford University
Press, Inc. Used by permission of Oxford University
Press, Inc.)

Fig. 1.1. Side branched polyethylene.




Steric — mean square distance of a freely jointed chain

(R?*) =nb,*=C_nl? = Nb? = Lb, = N,b,*

N # of backbone bonds L Fully extended length
Length of an effective b, Kuhn length
" random work
| Bond length N, =L/b, # of Kuhn steps

2
C, = g—'; Characteristic ratio: 5~10

Radius of gyration

R,
NG

N Degree of polymerization

b Statistical segment length R



van der Waals interactions

Lenard-Jones potential

W (r) = 4{("

due to correlation between the orientation of
one dipole and that of its neighbors

4 Repulsion
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the Flory-Huggins model: polymer-polymer mixture
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f=free energy of mixing
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most polymer blends are immiscible

(6, -6, ) forliquid. For polymers, not computed, but

adjusted to obtain the best agreement between
theory and experimental data

UCST, LCST
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:', ‘\\ (a) CH Figure 2.11 _ (a) Linear and ethyl-branched monomers
10t i 5 i3 that, when copolymerized together at various ratios, give
X 5 ' lﬁ 'I' 'ﬂ 'I' 'ﬁ ?Hz polymers with a wide range of different ethyl branch con-
(3 i [-C-C-Cc-C-] [-C-C-] tent. By mixing together polymers with different levels of
': 7 |l| |!| |!{ 'lq ||.| |1| ethyl branching and measuring x by neutron scattering,
! theories of polymer miscibility can be tested. (b) Repeat
i Linear C4 Branched C4  units for polypropylene and “head-to-head” polypropy-
i lene. (Reprinted with permission from Krishnamoorti et
-" (b) CH, al., Macromolecules 27:3073. Copyright 1994, American
e ' r . CH; CHy CH;  Chemical Society.)
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Figure 2.10  x versus volume fraction of deuterated polystyrene in an isotopic blend of deuterated

and hydrogenated polystyrenes at 160°C. The degrees of polymerization are: (@) Ny = 8700,
Np = 11,500; and (O) Ny = 15,400, Np = 11, 500. The dashed lines are the error limits, |

(Reprinted with permission from Londono et al., Macromolecules 27:2864. Copyright 1994, American
Chemical Society.) |



van der Waals interactions - suspensions
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Figure 2.12 Van der Waals force F between two curved mica surfaces of radius R ~ 1 cm in
water and electrolyte solutions. The line is the fitted van der Waals force with Hamaker constant
Ay = 2.2 x 10~20 J. At distances D greater than 5 nm, the force is closer to zero than predicted
because of retardation effects. (From Israelachvili and Adams 1978; and Israelachvili 1992, reprinted
with permission from Academic Press.)



Electrostatic interactions

The Poisson-Boltzmann equation

Local charge imbalance close to charged surfaces due to mobile ions
Number density is given by the Boltzmann distribution
n. =ny exp(-z.ey /k;T)

Electric potential is determined by the Poisson-Boltzmann equation

—ziey [kgT

i

For a symmetric electrolyte  ,(x) = 2ks T In{“ A }
ez 1-™

For a weak surface potential  /(x) ~ AksT 7 exp(—xX) =, exp(—«X)
ez

Exponential decay with a decay length of Debye length K -
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