Ch 07

Rheology of dilute polymer solutions
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Molecular weigt scaling

Rouse model: free draining, no hydrodynamic interaction
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Solvent quality
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Figure 3.13 Linear viscoelastic data (symbols) for polystyrene in two theta solvents, decalin and
dioctylphthalate, compared to the predictions (lines) of the Zimm theory with dominant hydrodynamic
interaction, h = oo. The reduced storage and loss moduli G, and G’y are defined by G}, =
[G'IM/NakpT and G} = [G"]M/NakgT, where the brackets denote intrinsic values extrapolated
to zero concentration, [G}] = lim.,0(G’/c) and [G%] = lim,,o[(G" — wns]/c), and c is the
mass of polymer per unit volume of solution. The characteristic relaxation time 1o is given by
70 = [nloMn;/NakpT. For frequencies tow greater than 10, G; and G are proportional to w2, in
agreement with the Zimm theory, and not the Rouse theory, which predicts G’ = G” — 0  w!/2.
(From Johnson et al. 1970, with permission of the Society of Polymer Science, Japan.)
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Nonlinear rheology

Rouse and Zimm model predict constant shear viscosity and normal

stress coefficients
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Figure 3.14 Curves of intrinsic relative shear viscosity versus dimensionless shear rate g* for
dilute solutions of poly(a-methylstyrene) with molecular weights of (1) 690,000, (2) 1,240,000, (3)
1,460,000, (4) 1,820,000, (5) 7,500,000, and (6) 13,600,000 in toluene (a good solvent), and (7)
13,600,000 in decalin (a theta solvent). (Reprinted with permission from Noda et al., Journal of
Physical Chemistry 72:2890 Copyright 1968, American Chemical Society.)
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Figure 3.2 Trouton ratio, Tr, of uniaxial extensional viscosity 7, to zero-shear viscosity 7o after
start-up of steady uniaxial extension at a rate of & ~ 1 sec-! for a “Boger fluid” consisting of a 0.185
wt% solution of flexible polyisobutylene (M,, = 2.11 x 10%) in a solvent composed mostly of viscous
polybutene with some added kerosene (solid line). The dashed line is a fit of a “multimode” FENE
dumbbell model, where each mode is represented by a FENE dumbbell model, with a spring law
given by Eq. (3-56), without preaveraging, as described in Section 3.6.2.2.1. The relaxation times
were obtained by fitting the linear viscoelastic data, G’ (w) and G (). The slowest mode, with 7; = 5
sec, dominates the behavior at large strains; the best fit is obtained by choosing for it an extensibility
parameter of B = 40,000. The value of B = 3L?/(R?)) = 3(0.82)*n/Cc, predicted from the
molecular characteristics, is around 20,000. This value is obtained using n = M, /28 = 75,000
backbone bonds and Co, = 6.8 (see Table 3-3). (From Verhoef et al. (1997), with kind permission
from Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)
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Figure 3.17 Birefringence as a function of the eigenvalue of the velocity gradient tensor, /@G,
for planar flows generated in a “four-roll mill,” for dilute solutions of polystyrenes of three different
molecular weights in polychlorinated biphenyl solvent. Here G is the strain rate and o the “flow type”
parameter. For planar extension, @ = 1 and G = ¢ is the extension rate; for simple shear, « = 0
and G = y is the shear rate. The different symbols correspond to & values of 1.0 (O), 0.8 (A), 0.5
(4), and 0.25 (diamonds). The curves are theoretical predictions from the FENE dumbbell model,
including conformation-dependent drag (discussed in Section 3.6.2.2.2). (From Fuller and Leal 1980,
reprinted with permission from Steinkopff Publishers.)

GJa eigenvalue of the velocity gradient tensor
equivalent to the extensional component
of the flow

In a mixed flow, the stretching of a polymer is dominated by the
extensional component of the flow



Finite extensibility
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Prediction of FENE-P model

1,0

Figure 320 Dependence of the
first normal stress coelficient on di-
mensionless shear rate §°, as pre-
dicted by the bead-spring theory
with conformation-dependent hydro-
dynamic ineraction and Anite exten-
sibiliy with N; = 9 springs, for
various values of B, Here Wi =
P90/ 200 (Adapted from 1. MNon-
MNewt. Fluid Mech., 34:181, Kish-
bawgh and McHugh, { 195900, with kind
permission from Elsevier Science -
NL, Sara Burgerhartstraat 25, 1055
KV Amsterdam, The Netherlands. )
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Figure 3.19 The polymer contri-
bution to the steady-state uniaxial
extensional viscosity 7, divided by
the polymer contribution to the zero-
shear viscosity 1,0 = 1o — 15 for
the dumbbell model with a nonlinear
“FENE” spring and various values of -
B = 2BL%. (From Bird et al. Dy-
namics of Polymeric Liquids, Vol. 2,
Copyright © 1987. Reprinted by per- .
mission of John Wiley & Sons, Inc.) |



Prediction of DNA motion

Worm-like chain model
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Figure 3.21 Distribution of bead mass as a
function of position downstream of the tether
point of a DNA molecule of length L =
67.2 um for various velocities measured in ex-
periments similar to those described in the cap-
tion to Fig. 3-1. The lines are the predictions
of Monte Carlo molecular simulations using the
elastic force from the “worm-like chain” model,
Eq. (3-57), and conformation-dependent drag,
as described in the text. The value of the parame-
ter Leoit/ kg T = 4.8 sec(um)~2 is obtained from
the diffusivity measurements of Smith et al.
(1995Y; Lroa/kaT = 9.1 sec(uum)~2 is obtained
from Eq. (3-62) for a fully stretched filament.
(From Larson et al. 1997, reprinted with per-
mission from the American Physical Society.)
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