Capillarity

Dong - Myung Shin

Hongik University

Department of Chemical Engineering

Capillarity – Introduction

```
Capillarity(
                                  가
        가
                                 . (flow ceased).
Capillary effect (
           surface and colloid science
                   가
                                        가
                                                coalescence process
```

Capillarity - Introduction

Capillary forces in practical situation

Figure 6.1. Important functions of capillary forces in practical situations: (a) as twoemulsion drops approach, the pressure at the nearest surfaces increases, deforming the drops and enlarging the radius of curvature in the immediate area. That deformation causes the capillary pressure in the regions outside that area to decrease in a relative sense, sunctioning continuous phase from between the drops and increasing the liklihood of contact and film rupture or coalescence. (b) in capillary displacement, the liquid that preferentially wets the solid will displace the less wetting liquid.

가

가

Capillarity - Capillary Model

A Capillary Model

system , **2** 가 . 가

- 1. various interfacial tensions
- 2. the geometry of the solid-liquid-liquid interface
- 3. the geometry of solid surface at the three-phase boundary line.

Capillarity - Capillary Model

A Capillary Model

Contact angle: 가

Figure 6.2. Contact angles in solid--liquid systems: (a) a small angle measured through the liquid for a system with a low interfacial energy; (b) a large angle for a system with little favorable solid--liquid interaction, ie, a high interfacial energy.

Capillarity - Capillary Model

A Capillary Model system (hydraulic) 가 (curvature) (hydrostatic • head) 가 system • system

A Capillary Driving Forces in Liquid—Fluid Systems

```
surface tension
                 bulk
  hydrostatic pressure가
```

• A Capillary Driving Forces in Liquid—Fluid Systems
1806 Laplace7

$$P_1 - P_2 = \Delta P = \sigma(1/r_1 + 1/r_2) = P_{cap}$$
 (6.1)

$$r_1$$
 r_2 $r_1 = r_2 = r$, 6.1

$$\Delta P = \frac{2\sigma}{r} \tag{6.2}$$

A Capillary Driving Forces in Liquid—Fluid Systems

r 가 dr 가 8 r dr 가 .(6.3)

Figure 6.3. Illustration of the growth of a fluid drop as related to capillary pressure.

$$4\pi(r+dr)^2 = 4\pi(r^2 + 2rdr + dr^2) \approx 4\pi r^2 + 8\pi rdr$$

A Capillary Driving Forces in Liquid—Fluid Systems

 $W = \sigma dA \tag{6.3}$

σdA . ,

 P_1 P_2 ?

 $P_1 - P_2 = \frac{2\sigma}{r} \tag{6.2a}$

A Capillary Driving Forces in Liquid—Fluid Systems

```
system
                                                   system
                                                                   가
flat surface
                       r_1 = r_2 = \infty, \quad \Delta P = 0
                         concave(), \Delta P > 0
       convex , \Delta P < 0
                capillary pressure가
```

A Capillary Driving Forces in Liquid—Fluid Systems

• drop 가 ,

Solid--Liquid--Fluid Systems: The Effect of Contact Angle

$$\Delta G = \sigma_{SV} \Delta A_{SV} + \sigma_{SL} \Delta A_{SL} + \sigma_{LV} \Delta A_{LV} \qquad (6.4)$$

$$\sigma_{SV} = \sigma_{SL} + \sigma_{LV} \cos \theta \qquad (6.5)$$

Young's equation

Figure 6.4. The wetting of a solid by a liquid in the presence of a second fluid phase.

Solid--Liquid--Fluid Systems: The Effect of Contact Angle

Young's equation

$$\sigma_{SV} = \sigma_{SL} + \sigma_{LV} \cos \theta \qquad (6.5)$$

Figure 6.4. The wetting of a solid by a liquid in the presence of a second fluid phase.

$$\Delta G = \sigma_{SV} \Delta A_{SV} + \sigma_{SL} \Delta A_{SL} + \sigma_{LV} \Delta A_{LV} = 0$$

$$\Delta A_{SV} = -ab$$

 $\Delta A_{SL} = +ab$,
 $\Delta A_{LV} \approx ab \cos \theta$

Capillary Flow and Spreading Processes

가, duplex film drop lens

Capillary Flow and Spreading Processes

$$G = (\delta G / \delta A_A) dA_A + (\delta G / \delta A_{AB}) dA_{AB} + (\delta G / \delta A_B) dA_B$$
 (6.6)

A substrate, B liquid

$$dA_A = -dA_B = dA_{AB}$$

$$(\delta G / \delta A_A) = \sigma_A, (\delta G / \delta A_B) = \sigma_B, (\delta G / \delta A_{AB}) = \sigma_{AB}$$

$$(\delta G/\delta A_B)$$
 liquid B solid A spreading . A B spreading coefficient, $S_{B/A}$,

$$S_{B/A} = \sigma_A - \sigma_B - \sigma_{AB} \tag{6.7}$$

Capillary Flow and Spreading Processes

Capillary Flow and Spreading Processes

```
system
, bulk properties
, pulk properties
, pu
```

: benzene water

benzene;
$$\sigma_B = 28.9 \,\mathrm{mN \, m^{-1}}$$

water:
$$\sigma_B = 72.8 \,\text{mN m}^{-1}$$

$$\sigma_{AB} = 35.0 \, \text{mN m}^{-1}$$

6.7 spreading coefficient

$$S_{B/A} = 72.8 - 28.9 - 35.0 = 8.9 \text{ mN m}^{-1}$$

Capillary Flow and Spreading Processes

가 saturate

, 62.2 mN m⁻¹

$$S_{B/A(B)} = 62.2 - 28.9 - 35.0 = -1.7 \text{ mN m}^{-1}$$
 A(B) B A lens

benzene

 $\sigma_{B(A)} = 28.8 \text{ mN m}^{-1}$ $S_{B/A(B)} = 72.8 - 28.8 - 35.0 = 9.0 \text{ mN m}^{-1}$

spreading

가

$$S_{B/A(B)} = 62.2 - 28.8 - 35.0 = -1.6 \text{ mN m}^{-1}$$

benzene

spreading

surface tension 가 spreading - retraction - lens formation

initial

Capillary Flow and Spreading Processes

3 가

• , - interface

lens formation

oil-water interfacial tension

spreading

• Geometrical Consideratins in Capillary Flow

```
Capillary flow
                 가
                                                    ,
              가
                                      가가
        가
                                가
                                                     가
            yielding
                                      . yielding
yielding
        가
                                가
```

Geometrical Consideratins in Capillary Flow

```
6.5 vapor (V) Lamellae (L)
. Plateau region (P) L
가 , 가 . P
(convex) Po
```

 P_{cap} (Plateau) > P_{cap} (Lamellae) flow from L to P.

Figure 6.5. Schematic illustration of the situation for an unstable foam

L P Lamellae 가 가

Geometrical Consideratins in Capillary Flow

 P_{cap} (Plateau) > P_{cap} (Lamellae)

flow from L to P.

Figure 6.5. Schematic illustration of the situation for an unstable foam system.

```
Yielding 가 가 oil recovery .
.
, 가 oil recovery .
, (cell)
```

Measurement of Capillary Driving Forces

Figure 6.6. Capillary rise phenomena for (a) wetting and (b) nonwetting liquids.

Measurement of Capillary Driving Forces

Measurement of Capillary Driving Forces 6.7

Figure 6.7. Capillary flow in a horizontal system of two joined capillary tubes of unequal diameters.

 Measurement of Capillary Driving Forces system

```
6.4 6.5 . solid-vapor (A<sub>SV</sub>) solid-liquid (A<sub>SL</sub>) . (dG) (three phase boundary) 가 ds
```

$$dG/ds = \sigma_{LV} dA_{LV}/ds - \sigma_{LV} \cos \theta dA_{SL}/ds \qquad (6.12)$$

$$\sigma_{\mathsf{LV}}$$
 θ 가 ,

Figure 6.8. Schematic illustration of examples of capillary flow: (a) a liquid climbing a partially immersed rod; (b) wicking---the spontaneous movement of a liquid from a nonwetting to a wetting situation.

Complication of Capillary Flow Analysis

Surface Tension Gradients and Related Effects

```
가
                                    solid-liquid and/or liquid/vapor
                                       \sigma_{\text{LV}}
         가
          \sigma_{\text{LV}}
                                                              Marangoni flow
Marangoni
                   "hot spot"
                                                    가
                 6.9)
```

Surface Tension Gradients and Related Effects

Figure 6.9. Schematic illustration of the Marangoni effect resulting from "hot spots" and surface tension gradients.

Surface Tension Gradients and Related Effects

Surface Tension Gradients and Related Effects

Contact Angle Effects

Contact Angle Effects

contact angle hysterisis

Figure 6.10. Schematic illustration of contact angle hysteresis of a liquid drop on an inclined surface.

Contact Angle Effects

contact angle hysterisis

6.11

contact angle hysteresis

가

Figure 6.11. Contact angle hysteresis on a rough surface: (a) if $\theta_{real} \ge 90^{\circ}$, $\theta_{apparent} > \theta_{real}$; if $\theta_{real} < 90^{\circ}$, $\theta_{apparent} < \theta_{real}$.

Contact Angle Effects

```
hysteresis SLV 가 hysteresis hysteresis (curvature) 가 . (smooth) "" 가 90 , 
90° , , , , , , , composite empirical . 17 .
```

Contact Angle Effects

. 6.7 ,
$$\theta_{\rm A}$$
 가 $\theta_{\rm R}$, P_{cap} 가 0


```
Dynamic Contact Angle Effects
                               hysterisis
   dynamic advancing contact angle, \theta_{AD}
       advancing contact angle \theta_A
\theta_{AD}
        \theta_{\mathsf{A}}
              가
                                                                             static \theta_A
                      dynamic contact angle
   (self-limiting)
                            SLV<sub>A</sub>가 SL SLV<sub>R</sub>
                                                                               \theta_{AD}
17
```

Rates and Patterns of Capillary Flow

```
가
                   (Laminar)
        (volume rate)
                              capillary system
       Poiseiuille's equation .
                                           , dv/dt (ml sec-1)
            dv/dt = \pi r^4 P/8\eta l
                                       (6.14)
                                              가
                , η
P
                                (linear rate)
                                                     가
            dl/dt = r^2 P/8\eta l
                                     (6.15)
    system
```

Rates and Patterns of Capillary Flow

$$dl/dt = 2\sigma_{LV}r\cos\theta/8\eta l \qquad (6.16)$$

Figure 6.7. Capillary flow in a horizontal system of two joined capillary tubes of unequal diameters.

Rates and Patterns of Capillary Flow

```
system
radius
radius
- , A
hydraulic radius
- , A
factor, r/η
ア カ ア ア , resistance
```

Introduction

가 가 wetting repellency , 가 .

Wetting in Woven Fibers and Papers

12

Figure 6.12. Schematic illustration of a drop of nonwetting liquid on an open woven capillary system.

100--200 15 - 20 μm 3-8cm

3-4 (order)

가 SLV

Wetting in Woven Fibers and Papers

가 가 wetting reagent 가

Wetting in Woven Fibers and Papers

Contact angle

Wetting in Woven Fibers and Papers

Table 6.1. The effects of changes in surface tension σ_{LV} (mN m⁻¹) and contact angle on the linear rate of flow in a hypothetical capillary system using eq. 6.16, where r = 0.05 cm, $\eta = 2.0$ cp, and l = 5 cm.

Situation	θ (°)	dI/dt (cm sec-1)	$\Delta(dI/dt)$ (x
σ _{LV} = 72:			
1	89	0.0016	
2	75	0.023	15
3	50	0.058	36
4 5	25	0.082	51
5	0	0.091	56
$\sigma_{LV} = 55$:			
6	89	0.0012	
7	75	0.018	15
8	50	0.044	37
9	25	0.062	52
10	0	0.069	57
$\sigma_{LV} = 40$;			
11	89	0.001	***
12	75	0.013	13
8	50	0.032	32
9	25	0.045	45
10	0	0.05	50

Wetting in Woven Fibers and Papers

Cynlinder

Waterproofing or Repellency Control

Waterproofing or Repellaency Control

. waterproofing repellency

- Fluorocarbon silicone
- θ_A >90°: 가
- $\theta_R > 90^\circ$:
- θ_A <90°:

- 가 .
- 가

Waterproofing or Repellaency Control

Waterproofing or Repellaency Control

6.13

. detergency

ceramic

Figure 6.13. Schematic illustration of capillary action in detergency: (a) an oily soil (1) spread on the solid surface in contact with a better wetting liquid (2); (b) the wetting liquid penetrates between the soil and solid by capillary action, "rolling it up" and allowing it to be lifted off of the surface.

Waterproofing or Repellaency Control

```
agitation displacement가 -  , \quad ( \quad ) \quad \sigma_{LL} ( \quad )   , \quad \theta_{A/water} \ 7^{\dagger} \ \theta_{R/oil}   , \quad 7^{\dagger}   . \qquad \theta_{A/water} \ 7^{\dagger} \ \theta_{R/oil}   . \qquad 7^{\dagger}   . \qquad 7^{\dagger}
```