MEMS in Chemical Engineering Module

Bioprocess Laboratory
Department of Chemical Engineering
Chungnam National University

Heat balance

• The general equations for the heat balance

$$\rho C_{p} \frac{\partial T}{\partial t} + \nabla \cdot (-k\nabla T + \rho C_{p} T u) = Q$$

Parameter	meter Meaning	
C_p	Heat capacity	
T	Temperature	
k	Thermal conductivity	
\mathcal{Q}	Heat sink or source	
u	Velocity profile	

A 3D Model of a MEMS heat exchanger

- This model deals with a micro heat exchanger made of stainless steel.
- These type of heat exchangers are found in lab-on-a-chip devices in biotechnology and in microreactors.
- Heat exchanger is of cross flow configuration and can consist of about 20 unit cells.
- At the model, modeled domain size is 800μm X 800μm X 60μm.

$$\nabla \cdot (-k\nabla T + \rho C_p T u) = 0$$
 at steady state

A 3D Model of a MEMS heat exchanger

- In the channels, channel flow is fully developed laminar flow.
- For both the hot and cold streams, the velocity component in the z-direction is set to zero.
- For the cold stream, the y-component of the velocity is zero while the x-component is given by the expression below

$$u = 16u_{\text{max}} \frac{(z - z_0)(z_1 - z)}{(z_1 - z_0)^2} \frac{(y - y_0)(y_1 - y)}{(y_1 - y_0)^2}$$

• The velocity component in the hot stream is zero in the x-direction while the y-component is given by the following expression

$$v = 16v_{\text{max}} \frac{(z - z_0)(z_1 - z)}{(z_1 - z_0)^2} \frac{(x - x_0)(x_1 - x)}{(x_1 - x_0)^2}$$

$$T = T_{cold}$$
 $T = T_{hot}$

Model navigator

- Start FEMLAB.
- 2. Select **Space dimension** 3D.
- 3. Select the Chemical Engineering Module, Energy Balance, Convection and Conduction mode.
- 4. Click OK.

Options and settings

- 1. Select **Constants** in the **Options** menu.
- 2. Define the constants according to the figure below.

Geometry modeling

- 1. Select **Work Plane Settings** from the **Draw** menu.
- 2. Click the **Quick** tab and select y-z plane.
- 3. Click **OK**.
- 4. Open **Axes/Grid Settings** from the **Options** menu.
- 5. Clear the **Auto** check box.
- 6. Type the axis values according to the figure below.
- 7. Go to the **Grid** page.
- 8. Clear the **Auto** check box.
- 9. Set x spacing and y spacing to 20.
- 10. Click **OK**.

Geometry modeling

- Click the Rectangle/Square button and click the coordinates (0, 0) and (800, 60).
- 2. Make another rectangle with corners in (200, 0) and (300, 40).
- 3. Click the **Array** button in the **Draw** toolbar.
- 4. Set x displacement to 120 and **Array** size x to 5.
- 5. Click **OK**.
- 6. Select all geometry objects by pressing **Ctrl** + **A**.
- 7. Open the **Create Composite Object** window.
- 8. Enter R1+R2+R3+R4+R5+R6 in the **Set formula** edit field.
- 9. Make sure that the **Keep interior boundaries** check box is selected.
- 10. Click **OK**.

Geometry modeling

- 1. From the **Draw** menu, select **Extrude**.
- 2. Set distance to 800 and click **OK**.
- 3. Make a copy of the **3D** object by pressing **Ctrl** + **C**.
- 4. Paste the copy with Ctrl + V.
- 5. Click the **Rotate** button in the **Draw** toolbar.
- 6. Set **Rotation angle** to 180.
- 7. Set **Point** on rotation axis according to : x : 0, y : 0, z : 60
- 8. Specify the **Rotation axis direction vector** according to : x : 1, y : 1, z : 0
- 9. Click **OK**.
- 10. Select all geometry objects by pressing **Ctrl** + **A**.
- 11. Click the **Scale** button.
- 12. Set **Scale factor** to 1e-6 in all directions.
- 13. Click **OK**.

Physics settings (subdomain)

- Select Expressions,
 Subdomain Expressions in the Options menu.
- 2. Specify expression according to the table below.
- 3. Click **OK**.
- 4. Select **Subdomain Settings** from the **Physics**menu.
- 5. Enter subdomain preperties according to the table below.
- 6. Click **OK**.

Physics settings (boundary)

- 1. Select **Boundary Settings** from the **Physics** menu.
- 2. Enter boundary conditions according to :
- 3. Click OK.

BOUNDARY	8, 14, 20, 26, 32	41, 48, 55, 62, 69	44, 51, 58, 65, 72, 77, 78, 79, 80, AND 81	ALL OTHER
Туре	Temperature	Temperature	Convective flux	Thermal insulation
Т	TO	T1	54	E

Solving the model

- Initialize the mesh by pressing the Initialize
 Mesh button in the Main toolbar.
- 2. Select **Solver Parameters** from the **Solve** menu.
- 3. Select **Stationary linear** from the **Solver** list.
- 4. In the **General** page, set **Linear system solver** to **GMRES**.
- 5. Set **Preconditioner** to **Algebraic multigrid**.
- 6. Click **OK**.
- 7. Click the **Solve** button in the **Main** toolbar.

Postprocessing and visualization

- 1. Select **Plot Parameters** from the **Postprocessing** menu.
- 2. Clear the **Slice** plot and select the **Isosurface** plot in the **General** page.
- 3. Clear the **Auto** option for **Element refinement**.
- 4. Set **Element refinement** to 5.
- 5. Go to the **Isosurface** window and set **Predefined quantities** to Temperature.
- 6. Click **OK**.

Postprocessing and visualization

- Clear the **Isosurface** plot and select the **Slice** plot in the **General** page.
- 2. Click the **Slice** tab and set **Slice** data expressions to U_expr.
- 3. Set x-levels to 1 and y-levels and z-levels to 0.
- 4. Click Apply.
- 5. On the **General** page, check the **Keep current plot** check box.
- 6. Go to the **Slice** window and set **Slice** data expression to V expr.
- 7. Set y-levels to 1 and x-levels and z-levels to 0.
- 8. Click **OK**.

Results

Conclusions

- The influence of the convective term in the flow channels is clearly seen in the isothermal surfaces.
- We can see the temperature differences in the cold and hot streams at the position of the outlets.