Catalyst pellet modelling by FEMLEB

Model Selection

🌃 Model Navigator New Model Library User Models Settings -Multiphysics 2D ¥ Space dimension: Remove Add EMLAB 🔁 ۸ 🖃 😋 Chemical Engineering Module Geom1 (2D) 표 💼 Energy balance Incompressible Nevier-Stokes (ns) 🖃 🖂 Mass balance i Convection and Diffusion (cd) Convection and Diffusion Fransient analysis Electrokinetic Flow Maxwell-Stefan Diffusion and Convection < Nernst-Planck + Dependent variables: c 표 💼 Momentum balance Application Mode Properties... + 📄 Pseudo 3D < > Add Geometry... Ruling application mode: Dependent variables: c2 Incompressible Navier-Stokes (ns) ¥ Application mode name: cd2 ¥ Element: Lagrange - Quadratic Multiphysics OK Cancel

- 1. FEMLEB 실행
- 2. Multiphysics 클릭
- 3. Fluid Dynamics에서

Incompressible Navier-Stokes 선택 후 Add

4. Chemical Engineering Module 에서 Mass balance >

Transient analysis 선택 후 Add

Axis Grid	
🔽 Axis equal	
x-y limits x min: -0.001 x max: 0.003 y min: -0.001 y max: 0.007	limits ✓ Auto z min: _1 z max: 1
	OK Cancel Apply
Axes/Grid Settings	×
Axis Grid	
Axis Grid	
Axis Grid Auto Visible V Labels	z grid
Axis Grid Auto Visible V Labels	z grid z spacing: 0.2
Axis Grid Auto Visible Labels x-y grid x spacing: 0.001 Extra x: 0.0009 y spacing: 0.001	z grid z spacing: 0.2 Extra z:
Axis Grid Auto Visible Labels x-y grid x spacing: 0.001 Extra x: 0.0009 y spacing: 0.001 Extra y: 0.0021, 0.0039	z grid z spacing: 0.2 Extra z:

- Option Menu Axis/Grid setting
- 2. 주어진 Axis/Grid 값 대입
- 3. OK클릭

-		
	/ I r	
1 V I		
	M	WIT

Size		Rotation angle
Width:	0.002	α (degrees)
Height:	0.006	
Position]
Base:	Corner 🔽	Style: Solid
x:	0	Name: R1
y:	0	

7 ×10 ⁻³	C	,	1	,	-,		(1 1))
6														
s	12			22	87				÷.					
2\$ E						_	***							-
3-).							
² 12 =						_								
1-														9 0
0-	r.		5				RI				2		×	-
-1 -6	-5	4		-2	4	0	0.9	2	3	4	5	6	7	0

- 1. Draw Menu Specific object Rectangle 선택
- 2. 너비와 높이 지정 후 OK
- Status Bar 의 Solid 더블 클릭 해서 선택 해제
- 4. Draw Menu Draw Objects 2nd degree Bezier curve 로 반원 그림

Name	Expression	Value	
RO	0.66	0.66	1
mu	2.6e-5	2.6e-5	
v0	0.1	0.1	
D	1e-5	1e-5	
Deff	1e-6	1e-6	
k	100	100	
clO	1.3	1.3	
			-
		OK Cancel App	ly

- 1. Options Menu Constants
- 지정된 상수 값 Name 과 Expression 입력
- 3. Multiphysics Menu NS 선택

NS Eqn Boundary setting

luation				⊢Equ
= u ₀				n u
Select human	-Boundary conditions: Boundary condition: Quantity u ₀ ^V 0 p ₀	Inflow/Outflow veloc Value/Expression 0 v0	tty Description x-velocity y-velocity Pressure	Bou 1 2 3 4 5 5
Interior boundaries				
undary Settings	- Incompressible	OK Cance	Apply	Bou
undary Settings iquation tr(-pl + n(⊽u + (⊽u) ^T)) =	- Incompressible	OK Cance	Apply	Bou Equ
undary Settings iquation ar(-pl + η(⊽u + (⊽u) ^T)) = 3oundary selection	- Incompressible - np ₀ Boundary conditions	OK Cance	Apply	Bou Equ Bou

Equation			
$\mathbf{n} \cdot \mathbf{u} = 0, \mathbf{n}' \cdot (-\mathbf{pl} + \eta (\nabla \mathbf{u} + 1))$	7 u) ^T)) t = 0		
Boundary selection	Boundary conditions Boundary condition: Quantity u ₀ v ₀ p ₀	Slip/Symmetry Value/Expression 0 0	Description x-velocity y-velocity Pressure
Interior boundaries			
		OK Canaa	I Apply
	L		
	L	Cance	
oundary Settings -	Incompressible	Navier-Stokes	s (ns)
oundary Settings -	Incompressible	Navier-Stokes	s (ns)
oundary Settings - Equation	Incompressible	Navier-Stokes	(ns)
oundary Settings - Equation u = 0	Incompressible	Navier-Stokes	(ns)
oundary Settings – Equation u = 0	Incompressible	Navier-Stokes	(ns)
oundary Settings – Equation u = 0 Boundary selection	Incompressible	Navier-Stokes	s (ns)
Equation u = 0 Boundary selection	Boundary conditions	Navier-Stokes	(ns)
Equation u = 0 Boundary selection	Boundary conditions Boundary condition:	No slip	; (ns)
Equation u = 0 Boundary selection	Boundary conditions Boundary condition: Quantity	No slip Value/Expression	(ns) (ns) Description
Equation u = 0 Boundary selection	Boundary conditions Boundary conditions Quantity u ₀	No slip Value/Expression	(ns) Comparison
Equation u = 0 Boundary selection 3 4 5 6	Boundary conditions Boundary conditions Quantity u ₀ v ₀	No slip Value/Expression	Coppy Coppy Copy
Equation u = 0 Boundary selection 3 4 5 6 7	Boundary conditions Boundary conditions Boundary condition: Quantity u ₀ Y ₀ P ₀	No slip Value/Expression	Coppy CoppyCop Cop Cop Cop Cop Cop Cop Cop Cop Cop
Equation u = 0 Boundary selection 3 4 5 6 7 8 V	Boundary conditions Boundary conditions Boundary condition: Quantity U0 Y0 P0	No slip Value/Expression	Coppy Co
Equation u = 0 Boundary selection 2 3 4 5 6 7 8 Select by group	Boundary conditions Boundary conditions Boundary condition: Quantity u ₀ v ₀ p ₀	No slip Value/Expression	Coppy Copy
Equation u = 0 Boundary selection 3 4 5 6 7 8 Select by group V Interior boundaries	Boundary conditions Boundary conditions Boundary condition: Quantity U ₀ Y ₀ P ₀	No slip Value/Expression	Comparison

- 1. Physics Menu Boundary Settings 선택
- 2. 각 Boundary 값지정

CD Eqn Boundary setting

	Boundary Settings - Convection and Dimusion (cd)
	Equation
	c=c ₀
(cd) : [Untitled]	
stprocessing Multiphysics Help	Boundary selection Boundary conditions 1 Soundary conditions
🖴 🕼 🗩 🛛 Model Navigator	Quantity Value/Expression Description
1 Incompressible Navier-Stokes (ns)	4 Concentration
◆2 Convection and Diffusion (cd)	
	Select by group
	Interior boundaries
	OK Cancel Apply
Boundary Settings - Convection and Diffusion (cd)	Boundary Settings - Convection and Diffusion (cd)
Equation	Equation
n•N = 0; N = -D⊽c+cu	n N = 0; N = -D⊽c
Boundary selection Boundary conditions	Boundary selection Boundary conditions
Boundary condition: Insulation/Symmetry	Boundary condition: Convective flux
3 Quantity Value/Expression Description	3 Quantity Value/Expression Description
4 Constant watch	4 No No Inward flux
Select by group	Select by group
Interior boundaries	Interior boundaries
OK Cancel Apply	OK Cancel Apply

- 1. Multiphysics Menu- CD 선택
- 2. Physics Menu Boundary Settings 선택 후, 각 Boundary 값 지정

NS Subdomain setting

1	Subdomain Settings - Incompressible Navier-Stokes (ns) 🛛 🔀	
	Equations	
	$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \left[-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \right] + \mathbf{F}$	
	- ⊽ • u = 0	
	Subdomain selection Physics Init Element	
	Fluid properties and sources/sinks	
	2 Library material: Load	
	Quantity Value/Expression Description	$\langle \cdot \rangle$
	p R0 Density	
	n mu Dynamic viscosity	
	F D Volume force, y-dir.	
	Select by group	::
	Active in this domain	
	OK Cancel Apply	
L		• •
	Subdomain Settings - Incompressible Navier-Stokes (ns)	a.
6	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations ρ(u·⊽)u = ⊽ {- βl + η(⊽u + (⊽u) ^T)] + F	3
6	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations Equations $\rho(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \{-p\} + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\} + F$ $-\nabla \cdot \mathbf{u} = 0$	3
6	Subdomain Settings - Incompressible Navier-Stokes (ns) Σ Equations ρ(u·▽)u = ▽ {- pl + η(▽u + (▽u) ^T)] + F - ▽·u = 0 Subdomain selection Physics linit Element	3
6 5	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(u \cdot \nabla)u = \nabla [-pl + \eta(\nabla u + (\nabla u)^T)] + F$ $- \nabla \cdot u = 0$ Subdomain selection Physics Image: Pluid properties and sources/sinks	3
- 6 5	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla [-p] + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + F$ $- \nabla \mathbf{u} = 0$ Subdomain selection Physics Physics Image: Fluid properties and sources/sinks Library material: Load	
6 5 49	Subdomain Settings - Incompressible Navier-Stokes (ns) ≥ Equations p(u·▽)u = ▽ {- pl + η(▽u + (▽u) ^T)] + F - ▽ u = 0 Physics Init Element I I <td></td>	
6 5 49	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \{-\mathbf{p}\} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\} + \mathbf{F}$ $- \nabla \cdot \mathbf{u} = 0$ Physics init Element Subdomain selection Physics init Element Image: Subdomain selection Physics init Element Image: Subdomain selection Physics init Element Image: Subdomain selection Image: Subdomain selection Image: Subdomain selection Physics init Element Image: Subdomain selection Image: Subdomain selection Image: Subdomain selection Image: Subdomain selection	
 6 49	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(u \cdot \nabla)u = \nabla [-p] + \eta (\nabla u + (\nabla u)^T)] + F$ $- \nabla \cdot u = 0$ Physics Init Element 1 Fluid properties and sources/sinks 2 Init Element 1 Physics Init Element 1 Init Element<	
- 5 49 3	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla [-p] + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + F$ $- \nabla \cdot \mathbf{u} = 0$ Subdomain selection 1 Physics It Element 1 Quantity Value/Expression Density η Dynamic viscosity F_x 0 Volume force, x-dir. F_y Volume force, y-dir.	
5 49 3	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \{-p\} + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T\} \} + F$ $-\nabla \cdot \mathbf{u} = 0$ Physics Init Element Subdomain selection Fluid properties and sources/sinks Image: Select by group Physics Init Element Select by group Physics Init Element Fx Ovanticy Value/Expression Description p Dynamic viscosity Fx Volume force, x-dir. Fy Volume force, y-dir. Artificial Diffusion Artificial Diffusion	
- 6 5 49 3	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(u \cdot \nabla)u = \nabla [-p] + \eta (\nabla u + (\nabla u)^T)] + F$ $-\nabla u = 0$ Subdomain selection Image: Select by group Active in this domain Physics init Element Physics init Element Image: Select by group Active in this domain	
- 6 5 49 3 12 1	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(u \cdot \nabla)u = \nabla [-pl + \eta(\nabla u + (\nabla u)^T)] + F$ $-\nabla u = 0$ Subdomain selection 1 2 Image: Select by group Active in this domain Provide and the selection 0 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 3 4 2 2 2 2 3	
6 5 49 3 12 1	Subdomain Settings - Incompressible Navier-Stokes (ns) Equations $p(\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla [-p] + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + F$ $\cdot \nabla \cdot \mathbf{u} = 0$ Subdomain selection 1 Physics Init Element 1 Physics Init Element 1 Quantity Value/Expression Description p Density n Dynamic viscosity Fx Volume force, x-dir. Fy Artificial Diffusion OK	

- 1. Multiphysics Menu NS 선택
- 2. Physics Menu Selection Mode Subdomain Settings 선택
- 3. 각 Subdomain에 수치 대입

CD Subdomain Settings

				-
ucdomsin selaction	G Int Eement			
<u>^</u>	Soecies			
	Library materiat	🖌 🔽	ad	
	Quantity	Veluc/Exprcaaion	Description	
	Ęts	1	Time scaling chet/iniem	
	💿 Di sotropic	D)	Diffusion coefficient	
	🔘 Di prisotropio	1001	Diffusion coefficient	
	=	U	Reaction rate	
~	1	u	x-vehi :ly	
Salect by group	v	v	y-v-lo :ly	
Active in the sloman	Art ficial Diffusi.	n		
				_
		08	Cance Anniv	
o odomain Settings	- Convection a	nd Diffusion (c	d)	
0 –. b domain Settings ;uation -(-D⊽c) – R - u ⊽c, c - c	- Convection an	nd Diffusion (co	d)	
0 bdomain Settings yustion · (-D⊽c) - ℝ - u ⊽c, c - c Judomain selection	- Convection an oncentration	nd Diffusion (cr	d)	
0 bdomain Settings quation · (-D⊽c) - R - u ⊽c, c - c ubdomain selection	Convection and oncentration Init Element Species	nd Diffusion (cr	d)	
0 bdomain Settings ;uation · (-D⊽c) - R - u ⊽c, c - c ubdomain selection	Convection and an	nd Diffusion (co	d) oad	
0 bdomain Settings ;uation (-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection an oncentration C Init Element Species Library material: Quantity	nd Diffusion (cr	d) oad	
0 bdomain Settings pution · (-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection an encentration Init Element Species Library materiat Quantity dis	nd Diffusion (co value/Expression	d) oad Description Time scaling coefficier	
0 bdomain Settings uation ·(-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection at oncentration c Init Element Species Library material: Quantity \hat{q}_{s} \odot D isotropic	nd Diffusion (co v L Value/Expression 1 Deff	d) oad Description Time scaling coefficien Diffusion coefficient	
0 bdomain Settings quation · (-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection at oncentration c Init Element Species Library material: Quantity &s O D isotropic D anisotropic	nd Diffusion (cr v L Value/Expression 1 Deff	d) oad Description Time scaling coefficien Diffusion coefficient	
0 bdomain Settings quation · (-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection an oncentration C Init Element Species Library material: Quantity &s ⊙ D isotropic ○ D anisotropic R	Ind Diffusion (cr Value/Expression Deff 1001 ktc/2	d) Description Time scaling coefficient Diffusion coefficient Diffusion coefficient Diffusion coefficient Reaction rate	
0 bdomain Settings quation (-D⊽c) - R - u ⊽c, c - c ubdomain selection	- Convection an oncentration C Init Element Species Library material: Quantity &ts O D isotropic D anisotropic R u	Ad Diffusion (cr Value/Expression L Deff L 001 k*c^2 0	d) oad Description Time scaling coefficient Diffusion coefficient Diffusion coefficient Reaction rate x-velocity	
0 bdomain Settings quation (-D∞c) - R - u ∞c, c - c ubdomain selection	 Convection at a concentration Init Element Species Library material: Quantity § D isotropic D anisotropic R u v 	Image: Control of the second	d) oad Description Time scaling coefficient Diffusion coefficient Diffusion coefficient Reaction rate x-velocity y-velocity	
0 bodomain Settings quation (-D∞c) - R - u ∞c, c - c ubdomain selection	- Convection a oncentration Init Element Species Library material: Quantity		oad Description Time scaling coefficient Diffusion coefficient Diffusion coefficient Reaction rate x-velocity y-velocity	
0 botomain Settings quation (-D⊽c) - R - u ⊽c, c - c ubdomain selection	 Convection at a concentration Init Element Species Library material: Quantity 	L Value/Expression L Value/Expression L Deff 1001 -k*c*2 0 0 0	oad Description Time scaling coefficient Diffusion coefficient Diffusion coefficient Reaction rate x-velocity y-velocity	

- 1. Multiphysics Menu CD 선택
- 2. Physics Menu Selection Mode Subdomain Settings 선택
- 각 Subdomain Settings 에 수치 대
 입

- 1. Mesh Menu Mesh Parameter 선택
- 2. Boundary 최대값 지정

Solver Manager	
Geom1 (2D) Geom1 (2D) Convection and Diffusion (cd)	1. Solve Menu – Solver Manager 선택 2. Solve For 탭에서 CD 선택해제

Auto select solver Solver: Stationary linear Stationary nonlinear Preconditioner: Time dependent Settings Eigenvalue Settings Parametric linear Solution form: Ceneral Symmetric matrices	Analysis:	General Nonlinear Adaption Advanced
Stationary nonlinear Time dependent Eigenvalue Parametric linear Parametric nonlinear Solution form: General Symmetric matrices	✓ Auto select solver Solver:	Linear system solver Linear system solver: Direct (UMFPACK) Preconditioner:
Parametric linear Parametric nonlinear Solution form: General Solution form: Adaption	Stationary nonlinear Time dependent Eigenvalue	Settings
Adaption	Parametric linear Parametric nonlinear	Solution form: General
	Adaption	<u> </u>

Solve

- 1. Solve Menu Solver Parameter 선택
- 2. General탭에서 Staionary nonlinear 선택

Progress - Solve Problem					
Matrix factorization					
Progress Log					
Description	Progress	Convergence	Parameter	Value	
Nonlinear solver	92 %	5.19e-7	Step	3	Stop
UMFPACK	0%		Step	0	Stop
					Stop
Close automatically					Cancel

1. Solve Menu – Solve Problem 클릭

Solve

2. 주어진 조건에서의 값이 계산 됨

Result

<Surface : Velocity Field>

Result

<Streamline : Velocity Field>

Result

흐르는 유체 속의 다공성 촉매에 의해서 유체에 속도구배가 생기게 된다. Pellet이 있는 부분은 속도가 느려지고 표면 부분은 상대적으로 속도 가 빨라지는데 이것은 Surface plot에서 파란 색으로 부터 붉은색으로 나타난다. 다음으로 이것을 Streamline으로도 나타낼 수 있다.

Surface plot

Streamline