FEMLAB example in heat transfer

Bioprocess Laboratory
Department of Chemical Engineering
Chungnam National University

Axismmetric Transient Heat Transfer

- This model domain is 0.3 X 0.4 meters.
- Boundary conditions

The left boundary is symmetry axis.

The other boundaries have a temperature of $1000 \,^{\circ}$ C. The entire domain is at $0 \,^{\circ}$ C at the start, which represents a step change in temperature at the boundaries.

Material properties

The density, ρ , is 7850 kg/m³.

The heat capacity is 460 J/kg·°C.

The thermal conductivity is 52 W/m \cdot °C.

Model navigator

- 1. Execute the **FEMLAB**
- 2. Select Axial symmetry (2D) in the **Space dimension** list.
- 3. Open the **Heat Transfer** folder.
- 4. Open the **Conduction** node.
- 5. Select **Transient analysis**.
- 6. Click **OK**.

- Go to the **Draw** menu, point to **Specify Object** and click **Rectangle**.
- 2. In the **Rectangle** dialog box go to the **Size** area and enter **0.3** in the **Width** edit field and **0.4** in the **Height** edit field.
- 3. Click **OK**.

Model navigator and Geometry modeling

- 1. Go to the **Physics** menu and choose **Boundary Settings**.
- 2. Select the **Select by group** check box and choose boundaries 2,3 and 4 by selecting on of them.
- 3. Select Temperature in the **Boundary condition** list.
- 4. Enter 1000 in the **Temperature** edit field.
- Click OK.

- 1. Go to the **Physics** menu and choose **Subdomain Settings**.
- 2. In the **Subdomain Settings** dialog box enter the themal properties in the domain according to the material properties.
- 3. Click **OK**.

Mesh generation

- 1. Go to the **Solve** menu and choose **Sover Parameters**.
- 2. In the **Time stepping** area in the **Solver Parameters** dialog box enter **0:10:190** in the **Times** edit field.
- 3. Click OK.
- 4. Click the **Solve** button.

Results of time stepping. (a)0:10:190 (b)0:10:1000

Postprocessing and visualization

- 1. Go to the **Postprocessing** menu and choose **Cross-Section plot Parameters** dialog box click the **Point** tab.
- 2. Select the **Point plot** button.
- 3. Under **Coordinates** enter **0.1** in the **X** edit field and **0.3** in the **Y** edit field.
- 4. Click **OK**.

Postprocessing and visualization

Free convection

• This example describes a fluid problem with heat transfer in the fluid.

An array of heating tubes is submerged in a vessel with fluid flow entering at the bottom.

Free convection(Partial differential equation)

• The incompressible Navier-Stoke equations consist of a momentum balance(a vector equation) and a mass conservation and incompressibility condition.

$$\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u = -\nabla p + \eta \nabla^2 u + F$$
$$\nabla \cdot u = 0$$

- The equations are following variables.
- u is the velocity field.
- p is the pressure.
- F is a volume force.
- P is the fluid density.
- η is the dynamic viscosity.
- ∇ is the vector differential operator.

Free convection(continued)

• The heat equation is an energy conservation equation that says that the change in energy is equal to the heat source minus the divergence of the diffusive heat flux.

$$\rho c_p \frac{\partial T}{\partial t} + \nabla \cdot (-k\nabla T + \rho c_p T u) = Q$$

- The equations are following variables.
- C_p is the heat capacity of the fluid.
- ρ is fluid density.
- Q is a source term.
- u is the velocity field.

Free convection(Physical constants)

Constants for modeling		
Property	Name	Expression(value)
Fluid density	rho0	1e3
Dynamic viscosity	mu	1e-3
Heat capacity	Ср	4.2e3
Thermal conductivity	kc	0.6
Volume expansion coefficient	alpha0	0.18e-3
Acceleration of gravity	g0	9.8
Inlet velocity	vin	5e-3
Inlet temperature	Tin	293
Heater temperature	Theat	303

Model navigator

- 1. Select 2D in the **Space dimension** list.
- 2. Click the **Multiphysics** button.
- 3. Open the **Fluid dynamics** and click **Incompressible Navier-Stokes.**
- 4. Click Add.
- 5. Open the **Heat transfer** and click **convection and conduction** and click **Add**.
- 6. Click **OK**.

Constants setting

- 1. From the **Options** menu, choose **Constants**.
- 2. Enter **rho0** in the **Name** field.

 Move the cursor to the **Expression** field and enter **1e3**.
- 3. Continue by adding the remaining constants.
- 4. Click **OK**.

Axes/Grid setting

- 1. From **Options** menu, choose **Axes/Grid Settings**.
- 2. In the Axes/Grid Settings dialog box, enter -0.01, 0.01, -0.01, 0.05 in the x min, x max, y min, y max edit field.
- 3. Click Ok.

- Go to the **Draw** menu, point to **Specify Object** and click **Rectangle**.
- 2. In the **Rectangle** dialog box go to the **Size** area and enter **0.005** in the **Width** edit field and **0.04** in the **Height** edit field.
- 3. Click **OK**.

- 1. Go to the **Draw** menu, point to **Specify Object** and click **Circle**.
- 2. In the **Circle** dialog box go to the **Size** area and enter **0.0025** in the Radius edit field.
- 3. Go to **Position** area and enter **0.015** in the y edit field.
- 4. Click **OK**.

- 1. Go to the **Physics** menu and choose **Boundary Settings**.
- 2. Select **Temperature** in the **Boundary conditions** list and enter **Tin** in the **Temperature** edit field at **boundary 2**.
- 3. Select **Temperature** in the **Boundary conditions** list and enter **Theat** in the **Temperature** edit field at **boundaries 6 and 7**.
- 4. Click the boundary 4 and select Convective flux in the Boundary condition.
- 5. Click **OK**.

1. Switch to the Incompressible
Navier-Stoke application mode by
selecting this mode from the
Multiphysics menu.

- 4. Select the unity beat in and then select the Unity beat ings. condition.
- 2. For the inflow boundary, select
- 5. Other bound daniether edictionse

 Ship by Outflow bouldity in the

 Boundary condition list. Enter

 vin in the y-velocity edit
- 6. Geld(leake the x velocity 0).
- 3. Continue by selecting the outflow boundary 4. In the **Boundary condition list**, select **Normal flow/Pressure**. Leave the pressure at 0.

- 1. Choose **Subdomain Settings** from the **Physics** menu
- 2. Select the single subdomain, number 1, and enter **rho0** and **mu** in the **Density** and **Dynamic viscosity** fields.
- 3. Enter alpha0*g0*rho0*(T-Tin) in the volume force, y-dir.
- 4. Click **Int** tab and set the initial value **v(t0)** to **vin**.
- 5. Click **OK**.

1. Switch to the Convection and conduction application mode by selecting this mode from the Multiphysics menu.

- 1. Choose **Subdomain Settings** from the **Physics** menu.
- Enter rho0, cp and kc in the Density, Heat capacity, and Thermal conductivity edit fields.
- 3. Enter **0** in the **x-velocity** and **y-velocity** edit fields.
- 4. Click **Int** tab and enter **Tin** in the **T(t0)** field.
- 5. Click **OK**.

Mesh generation

- 1. From the **Mesh** menu, choose **Mesh Parameters**.
- 2. In the **Mesh Parameters** dialog box, select **Fine** in the **Predefined mesh sizes** list.
- 3. Click **OK**.
- 4. Form the **Mesh** menu, choose **Initialize Mesh**.

Mesh generation

- 1. Go to the **Solve** menu and choose **Sover Parameters**.
- 2. In the **Time stepping** area in the **Solver Parameters** dialog box enter **0:1:30** in the **Times** edit field.
- 3. Click OK.
- 4. Click the **Solve** button.

- 1. Go to the **Postprocessing** menu and choose **Plot Parameters**.
- Check the Arrow at the plot type at the General tab in the Plot Parameters dialog box.
- 3. Click OK.

