Acoustics

Bioprocess Laboratory
Department of Chemical Engineering
Chungnam National University

The Acoustics Application

- The acoustics application mode provides two analysis types.
- Time-harmonic analysis

$$\nabla \cdot \left(-\frac{1}{\rho_0} \nabla p + q\right) - \frac{\omega^2 p}{\rho_0 c_s^2} = 0$$

Coefficient	Description
$\omega = 2\pi f$	Angular frequency
$ ho_0$	Fluid density
C_{s}	Speed of sound
q	Dipole source

• Eigenvalue analysis

$$\nabla \cdot (-\frac{1}{\rho_0} \nabla p) - \frac{\lambda p}{\rho_0 c^2} = 0$$

Coefficient	Description
λ	Eigenvalue

Subdomain quantities

Quantity	Variable	description
$ ho_0$	rho0	Density
C_s	CS	Speed of sound
q	qx, qy, qz	Dipole source

- Density: density is that of the fluid in which the acoustic waves propagate. The default value is 1.024 kg/m3.
- Speed of sound : The default value is 343m/s, the speed of sound in air at approximately 20 $^{\circ}$ C.
- Dipole source: Vector with individual components for each space dimension.

Boundary conditions

- Boundary conditions applied to the different analysis types.
 - Sound hard boundaries (walls)
 - Sound soft boundaries
 - Pressure source
 - Impedance boundary condition
 - Radiation boundary condition
 - Specified normal acceleration
 - Axial symmetry
 - Interface conditions on borders

Model: Reactive muffler

• This model examines the sound transmission properties of an idealized reactive muffler with long inlet and outlet pipes.

• You need to include only half of the geometry as indicated in the above figure, because this is an axisymmetric model.

Equations for reactive muffler

$$D_{TL} = 10 \cdot \log(\frac{W_i}{W_i})$$

• Transmission loss coefficient (1D theoretical solution)

$$D_{TL} = 10 \cdot \log(1 + (\frac{S_1}{2 \cdot S_2} - \frac{S_2}{2 \cdot S_1})^2 \cdot (\sin(k \cdot L)^2))$$

• Intensity

$$I = \frac{p^2}{2 \cdot \rho_0 \cdot c}$$

Sound power

$$W = \int (I \cdot 2 \cdot \pi \cdot r) \, dr$$

• Frequency

$$f = 1.841 \cdot \frac{c}{\pi \cdot D}$$

Modeling using the FEMLAB Model navigator

- Go to the Model Navigator and select Axial symmetry
 (2D) in the Space dimension list
- 2. In the list of application modes open the **Acoustics** folder and then **Time-harmonic analysis**.
- 3. Click OK.

Modeling using the FEMLAB Options and settings

- 1. Go to the **Options** menu and choose **Constans** to parameterize the model.
- 2. In the **Constants** dialog box enter the following constants.

Modeling using the FEMLAB Geometry modeling

- 1. Shift-click the **Rectangle/Square** button to specify a rectangle.
- 2. Enter 0.3, 0.6, 0.3 in the Width edit field and 1, 2, 1 in the height field and 0, 1, 3 in the z edit field respectively.

Modeling using the FEMLAB Physics settings (subdomain)

- Go to the **Subdomain** menu and choose **Subdomain Settings**.
- 2. Select all subdomains from the **Subdomain selection** list.
- 3. Enter rho_air in the **Fluid Density** edit field.
- 4. Enter c_air in the **Speed of sound** edit field.
- 5. Leave the default settings (0) for the **Dipole source**.

Modeling using the FEMLAB Physics settings (boundary)

- 1. Go to the **Boundary** menu and choose **Boundary Settings**.
- 2. In the **Boundary Conditions** dialog box enter the following boundary coefficients
- 3. Select boundaries 1, 3 and 5 in the **Boundary selection** list.
- 4. Select Axial symmetry in the **Boundary condition** list.
- 5. Select boundaries 8 to 12 in the **Boundary selection** list.
- 6. Select Sound hard boundary (wall) in the **Boundary** condition list.

Modeling using the FEMLAB Physics settings (boundary)

- 7. Select boundary 2 in the **Boundary selection** list.
- 8. Select **Radiation condition** in the **Boundary condition** list.
- 9. Type 1 in the **Pressure** source edit field.
- 10. Finally select boundary 7 in the **Boundary selection** list.
- 11. Select **Radiation condition** in the **Boundary condition** list.
- 12. Click **OK**.

Modeling using the FEMLAB Physics settings (expression variables)

- 1. On the **Options** menu, point to **Expressions**, and then click **Scalar Expressions**.
- 2. In the **Scalar Expression** dialog box enter the following.
- 3. Click **OK**.

Modeling using the FEMLAB Physics settings (expression variables)

- 4. Go the **Options** menu and choose **Expressions** and then **Boundary Expressions**.
- 5. In the **Boundary Expressions** dialog box select boundary 2 from the **Boundary selection** list and enter the following expression.
- 6. In the **Boundary Expression**dialog box select boundary 7
 from the **Boundary selection list** and enter the following
 boundary integration variables
- 7. Click **OK**.

Modeling using the FEMLAB Physics settings (scalar coupling variables)

- Go to the Options menu and choose Scalar Coupling
 Variables and the Boundary
 Variables
- 2. In the **Boundary Integration Variables** dialog box select
 boundary 2 and the enter the
 following boundary
 integration expression.
- 3. In the **Boundary Integration Variables** dialog box select
 boundary 7 and enter the
 following boundary
 integration expression.
- 4. Click **OK**.

Modeling using the FEMLAB Mesh generation

- 1. Go to the **Mesh** menu and choose **Mesh Parameters**.
- 2. In the **Mesh Parameters** dialog box select **Finer** from the **Predefined mesh size** list.
- 3. Click Remesh.
- 4. Click **OK**.

Modeling using the FEMLAB Computing the solution

- 1. From the **Solve** menu, choose **Solver Parameters**.
- 2. In the **Solver Parameters**dialog box select **Parametric linear** from the solver
 selection list.
- 3. Enter **freq** in the **Name of Parameter** edit field.
- 4. Enter **20:10:200** in the **List of** parameter values edit field.
- 5. Click **OK**.
- 6. Go to the **Physics** menu and choose **Scalar Variables**.
- 7. Enter **freq** in the frequency edit field.
- 8. Click **OK**.
- 9. Click the **Solve** button to start the simulation.

Modeling using the FEMLAB Postprocessing and visualization

- 1. Go to the **Postprocessing** menu and select **Domain Plot Parameters**.
- 2. Click the **Keep current plot** page.
- 3. Click the **Title/Axis** button and enter **Transmission loss** in the **Title** edit field.
- 4. Click **OK**.
- 5. Select **Point plot** in **Domain Plot Parameters** dialog box and click on the **Point tab**.
- 6. Select point **1** from the **Point selection** list.
- 7. Enter **Dtl** in the **Expression** edit field.
- 8. Click the **Line Settings** button and select **Triangle** in the **Line marker** list.
- 9. Click **OK**.
- 10. Click **Apply** in the **Domain Plot Parameters** dialog box
- 11. **Dtl_analytical** plot method is also same

Conclusions

- The discrepancy increases with frequency between the 1D theoretical model and a 3D analysis.
- In the lower frequency range, there is good agreement between the theoretical solution and the FEM solution.

Dtl analysis : triangle

Dtl theoretical model: square