질소 순환 시스템 및 관련 소재 Nitrogen Cycle System and Related Materials

Uk Sim, Ph. D.

Nanomaterials for Energy & Environment Laboratory www.uksim.org

Ammonia (NH₃)

- Colorless gas with a pungent smell, lighter than air (0.589) / m.p.(-77.7 °C), b.p.(-33.3 °C)
- Fertilizer (88% of NH₃ is used), Explosives, Textiles, Precursors to nitrogenous compounds, Cleaner, Fermentation, and Antimicrobial agent for food products, ...
- Emerging fields: Refrigeration, Remediation of gaseous emissions, Fuel (energy density of 11.5 MJ/L), ...

Nitrogen Cycle

Nitrogen fixation is the process by which gaseous nitrogen (N₂) is converted to amm onia (NH₃ or NH₄⁺) via biological fixation or nitrate (NO³⁻) through high-energy physi cal processes. N₂ is extremely stable and a great deal of energy is required to break t he bonds that join the two N atoms

Nitrogen Cycle

5

Industrial Production of Ammonia

- Haber-Bosch Process (1909)
 N₂ + 3H₂ → 2NH₃ (ΔH° = -45.8 kJ mol⁻¹)
 (150-250 bar, 400-500 °C)
- Catalysts for Haber-Bosch process

 Osmium (1st by Haber), Uranium (2nd by Bosch)
 BASF: Iron promoted with K₂O, CaO, SiO₂, and Al₂O₃

Reaction mechanism

 $\begin{array}{l} 1.N_2 \ (g) \rightarrow N_2 \ (adsorbed) \\ 2.N_2 \ (adsorbed) \rightarrow 2 \ N \ (adsorbed) \ (RDS) \\ 3.H_2 \ (g) \rightarrow H_2 \ (adsorbed) \\ 4.H_2 \ (adsorbed) \rightarrow 2 \ H \ (adsorbed) \\ 5.N \ (adsorbed) + 3 \ H(adsorbed) \rightarrow NH_3 \ (adsorbed) \ (NH \rightarrow NH_2 \rightarrow NH_3) \\ 6.NH_3 \ (adsorbed) \rightarrow NH_3 \ (g) \end{array}$

 3-5% of the world's natural gas production is consumed in the H-B process. (around 1–2% of the world's annual energy supply)

Industrial Production of Ammonia

- Haber-Bosch Process (1909)
 N₂ + 3H₂ → 2NH₃ (ΔH° = -45.8 kJ mol⁻¹)
 (150-250 bar, 400-500 °C)
- Catalysts for Haber-Bosch process -Osmium (1st by Haber), Uranium (2nd by Bosch)^{heat of reaction} -BASF: Iron promoted with K₂O, CaO, SiO₂, and Algor₃

• Reaction mechanism

 3-5% of the world's natural gas production is consumed in the H-B process. (around 1–2% of the world's annual energy supply)

Ammonia

Demand of Ammonia

- ✓ Nitrogenous Fertilizers : \$ 19.5B
- ✓ Ammonia : \$ 5.16B
- ✓ Ammonium nitrate, including solution \$: 1.96B
- ✓ Ammonium sulphate : \$ 1.98B
- ✓ Ammonium nitrate limestone etc mixes (Calcium ammonium nitrate or CAN,) : \$ 1.82B
- ✓ Urea-ammonium nitrate mixes in solution : \$ 1.33B
- → Total : 31.75 B\$

Global Trends

- ✓ Campfire alliance project
 - Goal
 - 1. Convert and store wind energy into ammonia fuel
 - 2. Develop, manufacture and export technology for the application of ammonia fuel to ships.

Participating institution

- 1. Provincial cities supported by Germany
- (Rostock, Greifswald, Stralsund, Ukermark)

https://wir-campfire.de/

- Alkammonia project
 - Goal
 - 1. Convert ammonia to power for hydrogen fuel car
 - Participating institution
 - 1. AFC Energy (UK) supported by European union
 - Application
 - 1. Off-grid electric solution
 - 2. Electric car charge system

http://alkammonia.eu/

- $N_2 + 3H_2 \rightarrow 2NH_3$ ($\Delta H^\circ = -45.8 \text{ kJ mol}^{-1}$) (~ 150 bar, ~ 400 °C at Haber-Bosch)
- NH₃ is **produced 180 million ton** through Haber-Bosch process. (2016)
- About 1-2% of the world's annual energy supply is consumed by NH₃ power plants. (34.4 GJ/ton NH₃)
- Synthesis efficiency about **70%** at industrial scale.
- Large scale facilities and total energy loss is 6.49 GJ/t NH₃ (Steam reformation loss 4.94 GJ/t NH₃, NH₃ synthesis loss 1.55 GJ/t NH₃)
- The emission of CO₂ is 3.45 kg/kg_[NH3]

Strength and Weakness of Ammonia Fuels

	MGO [*]	LNG ^{**}	Bio gas	Bio diesel	Methanol	Ammonia	Hydrogen
Fuel Type	Fossil fuel		Carbon-neutral fuel				
Storage Condition	Ambient temperature and pressure	- 162 ° C	- 162 °C	Ambient temperature and pressure	Ambient temperature and pressure	- 34 °C or 10 bar	- 253 °C
Relative Fuel Tank Size	1	~ 2.3	2.3	1	2.3	4.1	7.6
Relative CAPEX	1	~ 1. 3	~ 1.3	1	~ 1.15	~ 1.2	Very expensive
Fuel cost & Availability	Less expensive and rich reserves		Difficult to mass produ ce due to th e fuel sourcin g problem	Difficult to fore cast the price due to unstable supply and demand an d the food secu rity problem	High cost of CO₂ capture (from air)	Expensive but relatively low priced for carbon-neutral fuel	Reasonable fuel production cost but high storage and transport cost
*MGO: 선박용 경유 Acceptable							

**LNG: 액화천연가스

Undesirable

Introduction

Electrochemical NH₃ synthesis

11

Performance Chart from Our Group

Catalysts for electrochemical N₂ reduction to NH₃ production

Zirconium Nitride (ZrN)

Vacancy Great HER site

- Find catalyst where N_2^* is more stable than H^* at the limiting potential.
- ZrN vacancies have this property.
- Top sites are excellent HER catalysts.

Brian and Aayush from Norskov group

• ZrN

- The lowest bulk resistivity (~13.6 $\mu\Omega)$ and high thermal stability among group IV and V transition metal nitrides

- Investigated as wear resistant coatings, optical coatings, functional multi-layers, high T superconductors, thermoelectrics, etc.

- Promising materials for ULSI applications such as a diffusion barrier for Cu interconnects and contact metal in III-V semiconductor devices, in high density memory structures.

Ti Characteristic

- ➢ For NRR, Creation of active sites that efficiently promote N≡N cleavage is necessary
- For photocatalytic conversion, Ti3+ ions on TiO₂ can react and bond with N₂ gas through electron donation.

Active Mechanism of Ti3+

J. Am. Chem. Soc. 2017, 139, 10929–10936

- Ti3+ ions present by surface defects (oxygen vacancies)
 act as an active site to trap nitrogen gas. (a -> b)
- The adsorbed N2 interacts with H atoms of the
- adjacent surface Ti–OH and produces Ti4+–azo' species. (b -> c)
- Photoexcitation of TiO2 with Ti4+-azo' species creates
 CB e- and VB h+ pairs. (c -> d)
- The N=N dissociation on the Ti3+ produces Ti4+
 hydrazo species with the water oxidation by the h+.
 (d -> e)
- Once more, the H atom in oxygen combines with NH to form NH₂. (e -> f -> a)