에너지 저장 시스템 원리 Basic Principles of Energy Storage System

Uk Sim, Ph. D.

Nanomaterials for Energy & Environment Laboratory www.uksim.org

Energy Storage System

Energy demand and consumption grows by fuel

Energy Storage System

World Energy Council

Supercapacitor

Type of supercapacitor		Electrode material	Charge storage mechanism	Merits/shortcomings	
Electrochemical double layer capacitor (EDLC)		Carbon	Electrochemical double layer (EDL),	Good cycling stabilityGood rate capability	
		Carbon	non-Faradaic process	 Low specific capacitance Low energy density 	
Pseudo capacitor		Redox metal oxide or redox polymer	Redox reaction, Faradaic process	 High specific capacitance relatively high energy density relatively high power density 	
				- Relatively low rate capability	
Hybrid capacitor	Asymmetric hybrid	Anode : pseudo capacitance materials	Anode : redox reaction	 High energy density high power density 	
		Cathode : carbon(EDLC)	Cathode : EDL	- good cyclability	
	Symmetric composite	Redox metal oxide / carbon Redox polymer / carbon	Redox reaction plus EDL	 High energy density Moderate cost and moderate stability 	
	Battery-like hybrid	Anode : Li-insertion material	Anode : Lithiation/delithiation	- High energy density	
		Cathode : carbon	Cathode : EDL	 High cost and requires electrode material capacity match 	

Electrochemical double layer capacitor (EDLC)

(a) Helmholtz model (b) Gouy-chapman model (c) Stern model

- An electric double layer is a structure appearing when a charged object is placed into a liquid.
- The balancing counter charge for this charged surface will form on the liquid, concentrating near the surface.
- There are several theories or models for this interface between a solid and a liquid. ψ : potential
 - ψ_0 : electrode potential
 - IHP : inner Helmholtz plane
 - OHP : outer Helmholtz plane
 - explained in the Stern model.
 - Non faradaic process
 - Stores charge electrostatically at electrode/electrolyte interface as charge separation
 - There is no charge transfer between electrode and electrolyte
 - Intrinsically high power devices(short response time), limited energy storage, very high cycling stability(~10⁶)
 - Different forms of high surface area carbon are used as an electrode material(Activated carbon, Carbon aerogels, Carbon nanotubes,...)

Pseudo capacitor

- Pseudocapacitance is a Faradaic charge storage mechanism based on fast and highly reversible surface or near-surface redox reactions.
- The electrical response of a pseudocapacitive material is ideally the same as the one of a double layer capacitor, the state of charge changes continuously with the potential, leading to proportionality constant that can be formally considered as capacitance.
- Some materials can also store a significant charge in a double layer such as functionalized porous carbons, combining thus both capacitive and pseudocapacitive storage mechanisms.
- **Faradic processes occurring together with EDL charge** storage increase the specific capacitance of an electrode.
- The capacitance of a pseudocapacitor can be 10-100 times higher than that of an EDLC.
- Nevertheless, the power performance of a pseudocapacitor is usually lower than that of EDLSCs, due to the slower Faradic processes involved.

Hybrid Supercapacitor

- One electrode acts as EDLC forming a double layer at the Electrode/Electrolyte interface
- Another Electrode acts as Psuedo capacitor involving transfer of charge between Electrode and Electrolyte by Redox Reaction
- Advantage of Hybrid SC
- High Cyclic life
- High Power Density and Energy Density
- High Specific Capacity

Supercapacitor Mechanism

(+)

Ni foam

FGO

 $\frac{E}{\Delta t}$

Calculation Method for Confirming Mechanism

- Non-linear: pseudo capacitor
- **I**_p *VS.* υ^{1/2}
- Linear: pseudo capacitor

Non-linear: electrochemical double layer capacitor (EDLC)

 I_p : peak current, υ : scan rate

Calculation Method for Confirming Mechanism b-value from power law

Calculation Method for Confirming Mechanism total contribution of capacitive and diffusion

Electrochemical Battery

Figure 1. SOA electrolytes for four energy storage technologies ranked by their SEI formation, safety, price, rate performance, and electrochemical stability.

LI, Matthew, et al. New Concepts in Electrolytes. Chemical Reviews, 2020.

Secondary Batteries	Theoretical Specific energy density (Wh/kg)	Practical Specific Energy Density (Wh/kg)
Li-Ion	387	~160
Li-Air	~13,000	~1,700
Zn-Air	~1,300	~350
Li-Sulfur	~2,600	~370

Electrochemical Battery

Intercalation/Insertion-type Electrode

ex) $Li^+ + CoO_2 \Leftrightarrow LiCoO_2$

- The ions are inserted in /deserted out from layered(spinel) structure
- Key component/mechanism in Ion Batteries

Conversion-type Electrode

ex) $M^+ + O_2 \Leftrightarrow MO_2 (M = Metal)$

- The ions are converted to other form through electrochemical reactions
- Key component/mechanism in Metal-Air, Lithium-Sulfur Batteries

Zn-Air Battery

Batteries	Limitations
Aluminum-Air	Formation of Alumina (Al ₂ O ₃); Considered more as Primary Battery (Electrochemically)
Magnesium-Air	Formation of passivating layer, slow kinetics
Iron-Air	Formation of Iron Oxide (FeO); causing rapid sintering and pulverization

Table 1.	Reaction	equations	and	cell	voltage o	f metal-air
battery						

Metal air cells	Reaction	Cell voltage, V
Zn air ²⁾	$2Zn + O_2 \rightarrow 2ZnO$	1.65 V
Li air ⁴⁷⁾	$2Li + O_2 \rightarrow Li_2O_2$	2.96 V
Al air ⁴⁸⁾	$4Al + 3O_2 + 6H_2O + 4OH^- \rightarrow 4Al(OH)_3$	2.75 V
Mg air ⁴⁹⁾	$2Mg + O_2 + 2H_2O \rightarrow 2Mg(OH)_2$	3.09 V
Fe air ⁵⁰⁾	$2Fe + O_2 + 2H_2O \rightarrow 2Fe(OH)_2$	1.25 V

Ryu, S. K. and Jin-Soo Park, Journal of the Korean Electrochemical Society, (2013)

Li-air battery

- Better Reversibility
- High Operating Potential
- High Capacity → High Energy Density

Zn-air battery

- 30Zn
- Stable towards
 moisture

٠

٠

- Price Competitiveness
- Closer to Practical Applications

While the difference rely on the metal anodes, the key compartment of the Metal-Air battery systems is the cathode.