전기화학 촉매소재 설계

Design of Electrocatalytic Materials

Uk Sim

Department of Materials Science & Engineering Chonnam National University

Sabatier Principle

Interactions between the catalyst and the substrate should be "just right"; that is, neither too strong nor too weak.

volcano plots

2 Uk Sim et al., "Hydrogen Production by Electrolysis and Photoelectrochemical System", Handbook of Clean Energy System, John Wiley & Sons, NJ, USA 2015, 5, 1-42

Volcano plots

Catalyst for Water Splitting

Electrochemical reactions require **efficient materials** with superior performance for reaching the global outlook of energy conversion.

Nanomaterials for Energy & Environment Laboratory

NEEL

HER, OER mechanism

Overall reaction $2H_2O \rightarrow 2H_2 + O_2$

CHONNAM NATIONAL UNIVERSITY Department of Materials Science and Engineering

e - e - e - e - e - Volmer Volmer : $* + H^+ + e^ \longrightarrow H_{\text{abs}}$ $* + H_2O + e^ \longrightarrow H_{\text{abs}} + OH^-$ Hyerovsky : $H_{\text{abs}} + H^+ + e^- \rightarrow H_2$ | $H_{\text{abs}} + H_2O + e^- \rightarrow H_2 + OH^-$ Tafel : $H_{\text{abs}} + H_{\text{abs}}$ \rightarrow H₂ \mid H_{abs} + H_{abs} \rightarrow H₂ acidic condition basic condition H+ H_1 H_2 H_3 H_{ads} e - e - e - e - e - Heyrovsky H_{ads} H+ e - e - e - e Tafel H_{ads} \leftrightarrow H_{ads} $H₂$ Oxygen evolution reaction mechanism acidic condition 1st step : $*$ + H₂O \rightarrow OH_{ads} + H⁺ + e⁻ $2nd$ step : 2OH_{abs} \rightarrow O_{abs} + H₂O 3^{rd} step : O_{abs} + H₂O \rightarrow OOH_{abs} + H⁺ + e⁻¹₁O_{abs} + H₂O \rightarrow OOH_{abs} + H⁺ 4^{th} step : 200H_{abs} \rightarrow O_{abs} + H₂O + O₂ $*$ + OH \rightarrow OH_{abs} + H⁺ \overrightarrow{O} O_{abs} + H⁺ \vert OOH_{abs} \rightarrow O₂ +H⁺ basic condition + 1st step + + + $H_{2}O$ $\overline{\mathsf{OH}}$ H^+ e- + 2nd step + + + + 3 rd step $+$ + + $+$ + 4th step + + + O_* $H_{2}O$ $\overline{\text{OOH}}$ * H^+ e- $\overline{\text{OOH}}$ * $OOH*$ $H_{2}O$ $O₂$

Hydrogen evolution reaction mechanism

NEEL

-

Nanomaterials for Energy & Environment Laboratory

Rational Design of Efficient Electrocatalyst for Full Water Splitting across all pH conditions

Performance of Various Electrocatalysts for Water Splitting over a Wide pH range

Nitrogen and Fluorine co-doping in Graphene Quantum Dot for Water Splitting

NEEL Nanomaterials for Energy & Environment Laboratory

reduced Graphene Oxide Deposited on Silicon Nanowire for HER

Nitrogen doping in Graphene Quantum Sheets

Nitrogen doping effects

- *GQD with chemically bonded N atoms could alter their electronic characteristics and offer more active sites*
- *carbon adjacent to an N atom can cause a positive shift in Fermi energy, which was a benefit for the charge transfer*
- *Pyridinic : N atoms at the edge of six-membered ring*
- *Pyrrolic : N atoms at the edge of five-membered ring*
- *Graphitic : the substitutional site in graphene plane*
- As the nitrogen doping time increases, the order of *pyridinic, pyrrolic and others dominant.*
- *The doping to pyridinic and pyrrolic sites increases the work function*

Uk Sim et al., Energy Environmental Science 2015

NEEL

Nitrogen and Fluorine co-doping in Graphene Quantum Dot for Water Splitting

- *fluorine functionalization could alter the electronic state*
- *the bonding interaction between C and F can change ionic, semi-ionic, and covalent configurations owing to the strong electronegativity of fluorine*
- *With increasing F/C ratio, the C-F bonds change their character from ionic to semiionic to covalent one.*
- *the semi-ionic C-F bonding doped with ~4% fluorine could enhance the electrical properties of the electrode and facilitate electron transport through the active material*

NEEL

Uk Sim et al., Chemical Engineering Journal 2022 accepted*

Nanomaterials for Energy & Environment Laboratory

N,F-GQDs for water splitting

Uk Sim et al., Applied Surface Science 507 (2020) 145157*

 \triangleright AFM images of the GQDs dispersed of a SiO₂ substrate and height profiles

• Homogeneous N,F-GQDs particles were uniformly placed on the Si. • An average under 1.5 nm height of N,F-GQDs, which indicates the number of layers in N,F-GQDs was about ~ 3 layers.

➢ TEM images and histogram showing the size distribution of GQDs

- Most of N,F-GQDs dispersed on graphene sheet show a size distribution from 2 to 10 nm with an average size of 8.7 nm.
- The lattice structure shown in the highresolution TEM image indicates the N,F-GQDs are highly crystalline.

Nanomaterials for Energy & Environment Laboratory

NEEL

Natural enzyme

C.japonica derived Sulfur-doped Activated Carbon

NEEL Nanomaterials for Energy & Environment Laboratory

Metal anchored carbon quantum dots

Non-toxic Environmentally friendly High photostability High chemical stability Easy surface functionalization High electric conductivity

Design of experiments (DoE)

the design of experiments (DoE) is considered to discover superior performance of the prepared catalysts.

Machine learning: optimization method – Bayesian algorism

Nanomaterials for Energy & Environment Laboratory