10. Converging Flow

10.1 Introduction

Consider
# the converging or diverging flow
+* exact solution exists for flow in a cone

or for flow between flat plates

The planar converging flow or Hamel flow :



Fig. 10-1. Schematic of a finite converging or diverging flow.
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Fig. 10-2. Schematic of an infinite converging or diverging flow.



10.2 Solution

Kinematic assumptions:
# the flow 1s entirely radial, v.=vg=0

# no variations in z direction = d/dz=0

v.=v,.(r0)
The continuityv:
« L i{jr"u,.]' =0
roor
= ruv, = function only of 8 = f(8) or v,= *ﬂrﬁ
The boundary and flow conditions:
# f(+a) =f(-a) =0 < no-slip at the side walls

# the flow rate per unit width, g

q= f_;HU,rdB = f_:f(ﬂ)dﬂ



Navier-Stokes eq'ns:
* 1 component

dv, 9P

2
3 1 0 1 dvu,
PU; or ar +nl or r or J

(rv)+—5
r

1 oP _2 Jdu,
# B component 0= - g N 2798

Substituting f(0)/r for v, gives
f . _epP n df
P~ 3

or r:ﬂ dﬁﬁ
0= - d P 211 af
50 o

Eliminating the pressure ( P) by cross-differentiation and subtraction

% of M df, M o
0 dB rod8® P do



R -

. a third-order O.D.E., requiring three conditions

or

Scaling the variables, we define

§ = % . a normalized angle

Py

a normalized flow wvariable

The governing eq'n and boundary conditions then become
dF  d’F , 2dF

REF d[l:'+ dq]g +4a E =0
=1
FC-D=FGD=0 , [ F@®dp=-1
where [{= _2Pqa the ratio of nertial to viscous stresses

n
# the range of If | —oo < < oo

# J{ goes to zero both as pg/mM—0 and as a—0,



Analvtic solution exists in terms of integrals that 1s evaluated

numerically
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Fig. 10-3. Dimensionless velocity function F(§), a=mn/4



The numerical solution (Fig. 10-3 for a=n/4 ) :
# The curves for #=+1 and R =-1 are indistinguishable
from the curve for =0
# Very different behavior for inflow and outflow
#* When R is large and negative (converging flow),

v, 18 nearly constant over most of the included angle,

approaching a value of F(®)=1/2 , and all the velocity
variation 1s in a small boundary laver near the wall.

* When R is positive (diverging flow),
F () becomes negative near the wall for I > 14
indicating a backflow toward the vertex in this region.

. flow separation
: unstable turbulence occurs in practice



10.3 Orders of Magnitude

dFF  d°F  , 2dF _
a1 @ T

# ' and derivatives @ O(1)

RE 0

# J{—0 . creeping flow approximation (Ch. 12)
= a—0 :  lubrication approximation (Ch. 13)

# |[R|—c0 ' boundary layer approximation (Ch. 15)



10.4 Creeping Flow, R —0

d°F

R0 5 v4a” 4l -

dp

:a linear O.D.E. with constant coefficients

0

The general solution 1s
F(p) = A+BsinZ2ap+ C cos2ad
After applving the boundary conditions,

al cosZ2ap- cos2a)
sin2a-2acos2a

F(p) = for a=0

F(®) = %{1—:1:-2) for =0

The flows for which the nertial terms can be neglected are called

creeping flows. = linearization
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Fig. 10-4. Dimensionless velocity function F(®) for =0 .



10.5 Lubrication Approximation, a —0

This has a solution of F(p) = %(l—dﬁ'

. a special case of the creeping flow approximation

The velocity profile:
_f®) _ 3 LR
U= T S TG [1-( rﬂ}]
3q [1- }’2 —1
4(H/2) (H/2)"

where v =8 ! distance from the centerline

or v,=

H(r) =2rsina=2ra : the channel width at r



Since g= <v,>H,

3 ATRY:
U= <v,>[1 (H )]

. 1dentical to the flow between parallel plates

The lubrication approximation 1s therefore equivalent to treating the

flow locally as though the flow were between parallel plates, but

using the plate spacing H which is valid at that particular position.



10.6 Boundary Layer Approximation, |[?|— <o

. . dar _
|R| —>c0 10 0

= F'= constant =%

. the flow for large negative [? for the region
awayv from the wall.
cannot satisfy the no-slip condition at the wall.
singular, the order of ODE drops from 3 to 1.

. describes the inviscid flow in the core.

There 1s a region (boundary layer) near the wall, penetrating into

the fluid a distance proportional to V n/p , where the viscous terms

must be considered.



The scaling variable for 8 in the boundary laver:

_f®) _Fqg _ _q . 'IIFE
r- dr r ar 2ar

boundary layver thickness = ﬁ \/Tﬂ
plgl
0 1/

boundary layer angle = - PI | ~a|R|

Define a scaled angle:

0+a 1/ 12
— 1 — ':: +1} R = d R d
g a2 d+1)| 7| = |R| "db
- dF | dSF > dF
['hen, REF a‘tl) a’tl) +da 0 =0
L-"'E 3/2 a' F 2 12 diFr
=0
= RIRNFSe R v adt iR P
or R F dF d F 4a° dF -0

| 17 g’ IRl &8



Let |R|— oo, then

. dFF  d°’F
R >0: Fd§+ PE =0
. .dF  dF

: no longer singular

Boundary conditions:
C=0: F=0




dF d’F

1 dF° d°F

R >C: Ftﬂ FE =0 > 5 d§+d§3 =0
Integrating once, then
1.2 d°F I 1
> F +—a’§2 = constant = 2F (c0) = 3
1 . 2dF dF d°F 1 dF _
or PR TR’ & 8
1 dF’ 1 d{dF} _1dF _,
6 di 2 dU  dt 8 dt
1 1 dE 2 1
Integrating again, 6 F* 5 dt ) 8 7= constant
_ 1 _ 1
=% F () F(Cﬂ) o
At T=0 , we have ( & ) 112 . The solution of the

tvpe that we are seeking cannot exist for a diverging flow.



dF ., d’F _
— =

dt  dt
Integrating once, then
1 .2 dF
__F 4+ —
di”

1 ,2dF dF d°F 1 dF
o I T T w8 A T

R<C:-F 0 = -

= constant = —

=
B3 |~

or -

1 dF° 1 d ,dF » 1 dF
6 & 2 &' a8 aw Y

Integrating again,

1,3 1, dFF 2 1
61 "o U )
1

= - F(eo)+

F' = constant

1 .
ERY!

At 1=0, we have (45)2-, L

& 19 . no problem



The solution 1s

= (p+1) /2 -
5 pe1w [ ~0.225
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Fig. 10-5. Dimensionless velocity function F(®) for [R— —-co |

F=—= at (p+1)V |RI/2—5 or (0+1)—=7/V |R|

dimensionless angular boundary thickness



10.7 Power Requirement

* For flow in a straight pipe : power = flow rate X pressure drop

In Hamel f{low :

-I.-

Fig. 10-6. Schematic of stresses and surfaces used in power
calculation.



At surface 1, the force per unmit distance into the screen on the arc

sector df is (p-T,)rdd . Thus, the power to move fluid across

that sector of the surface is v, (p-T,)rdd . Therefore, the total

power requirement at surface 1 1s

P,

The pressure, p -

v, {p-T,)rdB = f:f(j;- -T,,.)dd

11 d'f op _ J‘
f_ &r 3 a8? ~ —&Ir - r‘g (¢ +m
Integration gives D= Do 2 —5 (f°+ HJ

P - a constant



ﬂf{lﬂ)

The stress component, T, : =2N——=— a
I r
Then, we may write P, in terms of f(8) |
P1=pmq—( ,: )f (cf +n—f —4nf ) fdb
And simularly at surface 2
Py=-pogt(55) | {pf"‘3+n—~’ rffd
2.?"2 -a
The net power requirement :
P=Pi+Py= (-5 [ar +n—~3 ~4rff®
2?"3 2?"1 -



ol , df o

Meanwhile, (

n“d o’
of” _a‘f of
= PD,B d83+4nd9 0

Integrating once,

| ?
Ff3+ﬂ%£‘+4rf= constant =1f""(a)

Substitute this into the power eq'n :

P= (-5 (g8 | f(8)db]

re I

or in terms of F and @,

P‘_

( 1 )[auﬁflpﬁ(q:m:p—fr”m]
2 3 r:’f -1



Define a dimensionless power requirement, P ([R,a)

2 1 1 .
_ - PR
P=and = ma? (2risina)? F (L)

F(l)]

i'_-'

Then, P (R.a) = sin u[—f FX()dp-

‘ ] . 2
- [4a(1+ cos*2a) -4sin2acos2alsin “a

R—0 P = .
( sin2a-2acos?2a)?
: . 3
a—0 : P = a
. 2
R—oc 1 P'= lRISH; . : P 1s independent of 1

16a
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Fig. 10-7. Schematic of a fimite converging flow.



Fig. 10-8. Dimensionless power requirement
as a function of angle of convergence, =0 .



