3. Pipe Flow

3.1 Introduction

3.2 Dimensional Analysis

A phyvsical process involves a relation between V' variables,

x, = function of ( x5,x5, + = = ,xy)
If the V wvariables require DD dimensions (L M8, etc.) , then

the wariables can be combined into G=V-D independent

dimensionless groups of the form

~ @, d- iy - b, b by .
P"‘r'lllelx:j v 'Ir] , ﬁ“3=xl'x3 o 'I1-1 , and so on.



One then obtains
N, = function of ( No, N4, = = = Ng)

. Buckingham pi theorem

It reduces the number of variables from V to (.
It indicates what groupings of physical variables affect the process.
It may be possible to limit the scope of an experimental program

and to design experiments on one physical scale that are applicable

to the process on an entirely different phvsical scale.



3.3 Smooth Pipe Flow of Newtonian Fluid

Dimensionless Groups:

Variables and dimensions for pipe flow

Variables Dimensions

Diameter, D length L
Length, L length L
Pressure Drop, |AP| force/area ML 9
Mean Velocity, v length/time 8!
Density, p mass/volume ML’

. 1 ‘ r-lo-1
Viscosity, 0 (force/area)xtime ML 8



6 variables, 3 dimensions; 3 independent dimensionless groups

L/D 1is dimensionless.
|AP| has the same dimensions as a stress.

nu/D has dimensions of stress.
1 =2 . . . _
bl pv® 1s kinetic energy per unit volume and has the same

dimensions as a stress or a pressure.
. 2 . . .
Thus, (pv”)/(nu/D) or Dvp/n 1s dimensionless.

I'} * - -
|Apl/pv° is also dimensionless.



The three most convenient groups to use are

|4p | Dvp L

pv° n D
One can then write
A :
M = function of ( Dup i L}
puv~ n D

If L is replaced by 2L, |AP]| is doubled.

Therefore,

Adpl L Dup

5~ = x function only of
pv D



Let us introduce two dimensionless groups,

% . Reynolds number (Re)

|||I .

14p L D . (Fanning) friction factor (f )
2pv- L

Then, f=f(Re)

|
The friction factor is a unique function of the Reynolc

number for smooth pipe flow of all incompressible

Newtonian fluids.




Friction Factor - Reynolds Number Data:

The form of the relation, f=f( Re) , must be determined from

experiment or from a more fundamental analvsis of the process.

Figure 3-1. f wvs. Re for incompressible Newtonian fluids;
data cover a broad range of viscosities, densities,

and pipe diameters.

Figure 3-2. Dye stream experiment.



Laminar flow : Re < 2100

_ 16 _n MDDt
1= Re O 97787 In

Transition regime : 2100 < Re < 4000

Turbulent flow : Re > 4000
1

. Hagen—Poiseuille eq'n

Blasius eq’n f=0079Re °* (4000 = Re = 107

&

1. -

=] |I—
=] ‘E

Q= 296(14pL D

L

von Karman-Nikuradse eq'n

Or

%f - 40log 1o ReVF)-04 (Re > 4000)



Capillary Viscometry: (advanced treatment in the section 19.6)

I . o |Ap |1D*
Hagen-Poiseuille eq'n ©: & 198 In
_n |Mplpt o : - r :
or 1= 198 1O : used 1n the capillary viscometry

Ex. 31 14p] =200Pa, L =1m, D =10 mm, @ = 60 mm/s

n= L 200Pa (10 *m)"
128 1Im 60x10 "m/s

check if Re < 2100 : assume that the density of the fluid 1s of
order 107 kg/m”, then,

Dvp _ 4Qp _ 4x(60x10 *m*/s)(10°kg/m”) _
n 7bDn nx (10 *m)(0.82 Pa-s)

=082Pa-s

Re= 10°°



End Effects:

There 1s a short region near the entrance and the exit of the pipe
where the flow 1s adjusting.

The entry length, L., 15 given approximately by
L,

~£~059+0055Re  (Re < 2100)
Le 40 (Re > 2100)
D o= [

Important in the capillary viscometers for measuring the viscosity of
very viscous liquids.



Physical Meaning of Re and f:

The forces acting on a fluid element

2

Inertial force F,=w . MU _PAdv~

e

N TN TN Ted

Viscous shear force Fy = %H = nud

External force F, = |AplA = |Apld®




f  The ratio of the net imposed external force to the inertial force

Fp _ _1dpld® _ _18p]
Iy pdv” puv~

Laminar flow = constant velocity = no momentum change
= no 1nertial force

Iy

)

f=f(Re) = |Ap|lD?= proportional to F,f(

I Iy
) o< (
F1_.' F1_'

) toc (Re) ™ or fRe= constant

A



3.4 Power

Power Input:

Frea F 1 ™ g * ' | i * 1 * i | * * :3
T'he external force acting on the fluid in the pipe is |AplnD=/4 .

’T"L-.'H'I W T 1-.l-il .r"]r'l.-n..—n. " " ———— - ] + 1.:—-..-"‘1 ”-— ..-'J - " I.:—n.a'l. ----:-- " -ﬂ] 4 _— " &J .,
LIS wWul ke U Lo 1ove e Ll I e pupe o ulsiallceo 15
7
| Apl(nD/4)A]

This takes place over a time Af, so the rate of doing work, 1.e., the
power input 1s
P = |Apl(nD?/4)(Al/At)

= |Apl(nD~/4)v

= Q|pl

power input :



Dissipation:

Power input
= the rate at which work 1s being done on the flowing syvstem
= Increase in the energy of the syvstem

— 1ncrease in the fluid temperature

The maximum increase in the fluid temperature in an adiabatic pipe

1s obtained from the energy balance

P=Qlipl=pc, QAT or AT = %ﬁfl—



This tvpe of power mput : lost work or viscous loss

The wviscous dissipation 1s the viscous losses per unit volume

P__ 1, 8
nD°L/4 2 D

dissipation in lammar pipe flow )

-
i

D

where 1s the wall shear rate



Optimal Pipe Diameter:

The economic trade—off between
the increased capital cost of large—diameter pipe and

the increased energy cost in pumping through small-diameter pipe.

The annual cost of pipe : C e =AD"L
The annual cost of power | C, e < @D
using the Blasius eq'n,

0. .n:- 0.2 ?JQE i

NS
D
0. .n:- 0.2 ?JQ_

475
D

Cpover < LE

:}..Lp



The total annual cost, C, 1s
C" = 'f" pipe + 'f";me“r

D.n:: 025 ~2.70
~AD"L +AL-E th’

The mimimum cost at some intermediate value of I) when

dC — n-ly - PD 7o DJ:‘JQE o

or = 47:‘?}- pD.n:- D’JQJ 7oy 1/1475+n)
_ 4 n\ | 1egs D MOV o x
Ty { 475\ ) p ¥ V11 =~ 1.5 m/s

(Figure 3-4. Cost per linear meter of standard steel pipe.)



3.5 Commercial Pipe

Relative Roughness:

The characteristic size of the surface roughness | k

One additional dimensionless group,

k/D (relative roughness), is required.

(Figure 3-5. Schematic of pipe with walls of

uniform, regular roughness.)



Then, the dimensional analysis gives

f=f( Re,%]

(Figure 3-6. Data of Nikuradse, 1950.)

- In the laminar flow, f 1s independent of k/D.
- Hvdaulically smooth region
- Complete turbulence region @ constant f

= the pressure drop comes entirely from the inertial forces.



Pipe roughness:

[rregulanities of the surface of real pipe cannot be characterized by a
single number, k/D.

Nevertheless, data for real commercial pipe are commonly analyzed
in terms of k/D, and the approach works reasonably well for clean
pipes.

(Figure 3-7. f wvs. Re for incompressible Newtonian fluid flow
in commercial rough pipe.)

Colebrook formula (empirical)

1 _ k 4.67
\/}. - ﬁlUng m{ D + Re\/}‘ )+ 2.28




f=004Re ™ 4000 < Re = 2 x 10’

Table 3-2. Typical vales of k for various tvpes of pipe
(given by Moody)

Matenal k (mm)
Drawn tubing(brass, lead, glass, etc.) 15 x 10°
Commercial steel or wrought iron 0.05
Asphalted cast iron 0.12
Galvanized iron 0.15
Casr iron 0.46
Wood stave 0.2-0.9
Concrete 0.3-3

Riveted steel 0.9-9




Ex. 3.3 Water at 20T is pumped through a 50-mm commercial

steel pipe at a velocity of 1.5 m/s. Ap/L =7

n=10"Pa-s p=10"kg/m”
T h u S
= -3 = 3 3
Re = Dvp _ (50 x10 m]{l_.é:-mfs]{lﬂ kg/m”) _ 7 5x10*
n 10 "Pa-s

From Table 3-2 we have k=005mm , so k/D=10"
Thus, from Fig. 3-7, f=0.0058 . And from the definition of f, we

) 1Apl _ 2pv°f _ -,
have . - D = 520Pa/m

In a smooth pipe, k=0, f=0.0047 2 —%i = 420Pa/m



Nominal and Real Diameter:
The diameter of commercial pipe 1s a nominal size.

Table 3-3  Wall thickness and inside diameter of nominal 50-mm
(2-in.) pipe. (O.D. = 60.33 mm)

Schedule number Wall thickness (mm) Inner diameter (mm)
oS 1.65 o7.02
105 277 54.70
40ST, 405 3.91 52.50
80ST, 80S 5.54 49.25
160 8.74 42.85

XX 11.07 38.18




3.6 Noncircular Cross Sections

Circular pipes : volume of liquid = nD*L/4
surface wetted by liquid = nDL

4 x volume of ligud
surface wetted by hqguid

= D=

4 xx volume of liquid

For any conduits :  Dy=—_0 e~ wetted by liquid

. Hydraulic diameter

For channels of constant cross-sectional area :

4 x cross sectional area
wetted perimeter

Dy =



Ex. A rectangular channel with sides a and b:

dab .1 1 .-1
2(a+b) _2{a+b]

DH:

(Figure 3-8. f wvs. Re for incompressible Newtonian fluid flow
In a channel with an equilateral triangular
Cross section.)



