5. Macroscopic Balances

5.1 Introduction

Conservation of mass, energy, and momentum
= Mathematical models of the flow
. A quantitative description of a phvsical flow process
. A set of mathematical relations

Macroscopic models, in which we are interested only in overall

process performance, and not in the detailed structure of the flow
field.



5.2 Control Volume and Conservation Principle

Control volume:
a region of space with well-defined boundaries where we can
monitor the flow in and out of the quantity that 1s beng

conserved

Conservation principle:

The rate of
change of the
conserved
quantity within
the control

volume

The rate at
which the
conserved
quantity enters
the control

volume

The rate at
which the
conserved
quantity leaves
the control

volume




Fig. 5-1. One-dimensional flow.

Fig. 5-2. Differential area with velocity vector v and norma
component V.



The differential volumetric flow rate through the small surface

element dA is
d(volumetric flow rate) = v-dA = VdA
The differential mass flow rate . . .

d(mass flow rate) = pv-+-dA = pVdA

The differential flow rate of C@ (the conserved quantity) . .

d(flow rate of CQ) = pleg) v- dA = pleg)VdA
( cg : the amount per unit mass )

The total flow rate of C@ over the surface is

J.. plea)Vda = <p(cpV>A



The surface average of Y , a quantity that varies from position to
position on the surface:
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The total amount of C& in the control volume:
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Fig. 5-3. Differential area in polar coordinates.
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Example 5.2

Fig. 5-4. Rectangular cross section with different values of

¥ in the two parts.

1 y=H W [

<Y > =ﬁ CWWdy = wdy+f ¥, dy]

_ ﬁ [uyl}.,H+ Y,(H-MH)] = h‘i'l +(1-M)Y¥,



5.3 Conservation of Mass

Basic equation: (continuity equation)

d - g r
< f <p >Adz=<pV > A, - <pV >, A,

or letting w=<pV >4,

d (- o
df f:l ‘i:[] }J“'?I_df—wl Lo

At steady state, w, =w,=w



Single fluid:

In a single fluid phase, the density does not change over a cross
section of the conduit.

| pleawaa=p [ (cqivda
e e

or <pleg)V>=p<(cg)V >

The continuity equation becomes

L[ <p>Adz=p <V >1A,-p,<V >4,

If the fluid is incompressible,
Pr=pP>=pP and the volume 1s a constant

{:-V-:}l B f-'?l;_,}
<V> A
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5.4 Conservation of Energy

Basic equation:

The first law of thermodynamics for a flowing svstem:

The rate of the rate at which the rate at which
change of the total]  |energy enters the | energy leaves the
energy within the B control volume by control volume by
control volume flow flow
the rate at which the rate at which
) heat 1s added . the work 1s done
through the on the fluid in the
boundaries control volume




The total energy = the internal energy + the potential energy
+ the kinetic energy

or cq=€+%u2+gh

Work = flow work + shaft work
Flow work : the work required to move the fluid into and out

of the control volume = <pV >/ A,- <pV >,A4,

Shaft work : all other work done on the fluid, W
Then, the equation of conservation of energy is

a% f:l_{: p{e+%u2+gh) >Adz =

< pl €+% v+ gh)V> 1A —<pl €+% Uhghﬂ;}‘zﬂz

+‘{IJI”;} lAl_{fJLr::‘ 2A2+ QH+ H}ﬂ}



Simplifving assumptions:

Assumption 1: Steady state, d/dt =10

Assumption 2: Single phase, uniform properties
<puV > =p<viV, <peV> =pe<V >

Assumption 3. Uniform equivalent pressure
<(p+pgh)V > = (p+pgh)<V >

Then, the energy balance becomes
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or ‘170 <V >, ghl+p—l
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defining 0Q);; = % . W= Ti’ , 1t finally becomes
1 <v'V> g
Ale + 0 <V > +gh+{]-)=ﬁQH+ﬁW5



Example 5.3
Compute the temperature rise for adiabatic flow of a nonreacting
incompressible fluid in a horizontal pipe of uniform cross section,

and the heat removal required to keep the flow isothermal.

The pipe is horizontal = Ah=0
The cross section is uniform = A(<v?V>/<V >) =0
The nonreacting incompressible fluid = Ae = ¢, AT

Assume no shaft work

rr]"IE]"I, ii'.‘,:&\.]r‘"' _:l_;‘::ﬂ' = 5{;";;
If the flow is adiabatic, 6@, =0, and AT = ;iﬂ

If isothermal, AT =0 |, and 00, = __:‘:,H



Velocity averages:

. <v V>
Let's introduce a= -

Then, we have simpler form

Me+ o <V >%+gh+ J’I;’—)zwyﬁwg
If U': 1"/:' , ﬂ: {L"i}ﬁ
<V >

For turbulent pipe flow : a=1.07

For laminar flow : a=20



Engineering Bernoulli Equation:

Differential form of energy balance

de + %d{ui?’}2}+gdfl+d( {;’-)= dQy+dWgq

de =Ta's—pd(%)
_ Py, 1
Tds-d( 0 )+ 0 ap
Then, we have
(Tds—dQH}+%d(uiV??2}+gdh+ggi =dWs

From the second law of thermodynamics,

Tds-dQy=dl,,=0 (zero only for a reversible process)



s d@<V > s gdhr P = dW-dly

Integrating from =z, to =z, we obtain

e L 2 a e 2 ”IJ:-G:J r
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2
: Engineering Bernoulli Equation
. Mechanical Energy Balance

[sothermal, 1deal gas:

fﬂ-_-ga‘fl _ RET P:cﬂ.} _ RET lnﬂ__g
p P M, Jp, p M, D

The fluid is incompressible:

P2 P _].- — J
dp. _ 1 dp - P2~ Py
Fab p p " p



Equivalent heads:
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> <V > velocity head

# 1 velocity head =
the losses in turbulent flow in a pipe 50 diameters long

Pipeline losses:

Losses in the straight lengths of pipe + losses in the fittings

: : : PL~DP2 _ 2<V >°
Losses in the straight pipe : /= 1p _ 5 Lf
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Losses in fittings @ /= & <V >"K;

In a pipeline network,

2<V >;Lifi f
Jo s Loy,

pipe lengths D i fittings 2

.I!r{.':

Table 5-1. K; in fittings and valves for turbulent flow



5.5 Conservation of Linear Momentum

Basic equation:

The rate of change
of the linear
momentum within

the control volume

the rate at which
linear momentum
enters the control

volume by flow

the rate at which
linear momentum
leaves the control

volume by flow

the sum of
all forces acting

on the syvstem

[Linear momentum 1s a vector quantity.




Linear momentum per unit mass 1s simply the velocity vector, wv.
Then, the conservation of momentum for a single fluid phase 1s

dif f.. -[J‘i: v>Adz = Pl{ Ul’r}lﬂl_pg‘i Ul’r}gﬂg
+p Ay poAo— F+( J: PAd2) g

I . the net force exerted by the fluid on the surrounding.

Simplifying assumptions:

(1) v 1s taken as normal to the cross-sectional plane over the entir
entrance and exit

d% | p<v>Adz =p, <V > A p.<VE >, A,

+p Ay poAo— F+( J: PAd2) g
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For turbulent flow : p=1

(2) Let's define P =

For laminar flow : B= %

d%_ f-:— _P{U?ﬂdz - ,E'lpl{-v- }ﬁﬂl_ﬂgpg‘{p‘- }éﬂg

+IJ1A1_IJ3A3_ F+( J‘? _Pﬁds)g

Since p<V >A=w, <V >A=<v>A,

d

(ﬁ: ‘J p‘il.?,}_z“l(fg :E'lwl{:l.?}l_ﬂgw:g{:u;}g

+IJ1A1_IJ3A3_ F+( J_U.PA{ITE}H



At steady state, w,=w,=w and d/dt=0

0=w(B,<v>1-By<v>) i A1-peAy- Fr( | pAdz)g



Aside on spring and dashpots:

Fig. 5-7. Schematic of a mass-spring-dashpot system.

In a mass-spring -dashpot system,
spring force : -k x

dashpot damping force @ —ndx/dt

The momentum balance 1s then

d*x cx
ar? Mt

m +kx=0



Multiply each term by dx/dt to obtain

de d'x . odx oz, dx _
M g RO ) R =0
1,.dr dxs > 1, dx?) _
or o mgLCq n -G i) ok g =0
After the integraticm
é ’ ]-lf( cfx . —f{’t: + constant = 0
kinetic viscous damping  potential
energy by the dashpot energy of the

extended spring



