6. Applications of Macroscopic Balances

6.1 Introduction

(Given the flow geometry and the flow rate, asked to calculate
the pressure drop, viscous losses, and force.
(venerally the number of equations 1s not sufficient to
determine the unknown variables.

Class [ : Calculate viscous losses for a given flow
some prior information on I = Ap from the momentum
eq'n = [ from the energv eq'n

Class II : Calculate the force for a given flow (inverse of Class 1
Class I : Calculate the pressure change for a given flow



The Steady Flow of Incompressible Newtonian Fluids

The continuity eg'n :
{-V- :“11‘41 — {I'F :7"31‘1.'[3

The energy eq'n (Engineering Bernouilli eq'n) :
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The Momentum eq'n :

0=w(B,<v>1-By<v>2)+pAy-poAy- F( | pAdo)g



6.2 Losses in Expansion

Let's consider the flow of an incompressible fluid through an
expansion

Fig. 6-1. Schematic of flow through an expansion.

Fig. 6-2. Forces on an expansion.

Class [ problem : Ap from the momentum equation,

then [, from the energy equation.
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# Assume that the flow is turbulent and that the velocity at
points 1 and 2 1s uniform over the cross section.
:}ul:uﬁ':ﬁl:ﬁg:l— and <V > =V

# The continuity equation : AV, = 4.V,
# The momentum equation in the flow direction :
0= pﬂllf’f—pﬂglf"gﬂjlﬂl—;JEAE—F
F : the component of F in the flow direction
Two contributions to F: F, and F,
F; © the force resulted from the tangential frictional
drag along the walls

F, . the force resulted from the fluid pressure on the

expansion surface at plane e, =—-p.(A.-A4,)



The momentum equation is then
0=pA,Vi-pAV3+pA~p:As+p(A,-A)-F,
or 0=pA,Vi-pAV5+(p,-p)A,+(p.—ps)As—F,

The length of straight pipe is small, = F,=0
Pe~DP1

P17 P2
p

* The engineering Bernouilli equation :

h, = h, , no shaft work

P17 P2
p

1 . .
I, = +5 (Vi-V3)



# Substituting the continuity equation for V,

and the momentum equation for (p,—p.)/p ,

; A 1,452 1
_or/2rq 2 1 242_ 1
I, = Vil A1+2{A1) 5]
75 As . +
or [ = ( -1)° Borda-Carnot equation

2 A



6.3 Force on a Reducing Bend

Class I problem : prior information on /[y
= Ap from the energv eq'n

= F from the momentum eq'n

Assume mmcompressible turbulent flow (a=p=1, <V >=V )
and no shaft work (8W¢=0)

Then, continuity : AV =AV,
_ 1 ..o Po 1l .2 D1
7o = 5+ = iy —=_].,
energy 213 0 211 D [y

X momentum - 0=pAlI*’f+plA1—Fx

y momentum : 0= -pA,Vi-p,A,—F y



T . %mfﬁ | K::% from Table 5-1.

Then, we obtain
Fl.:Al{;Jﬁpr}

i

: A,
F, = ~Ay(pytg pVALL+(1-K) (55)%)

F,
Fy

And | Fl=(F+F)" | 8=arctan(—>)

Vi 2. 2.1 A.
2 =L | Fl=pA3+ADY | 8= arctan (-2
p 2 A,




6.4 Jet Ejector

Class Il problem : = Ap from the momentum eqg'n
or the energy eq'n

Fig. 6-4. Schematic of a jet ejector.

It 1s difficult to estimate the viscous losses in the energy eg'n
which will be substantial due to the chaotic mixing.



The frictional force in the momentum eq'n will be negligible in the
relatively short distance from 1 to Z.

Therefore, the momentum eq'n can be used to compute Ap.

(p2-p)A = pAB, <V >1-pAV;
where <V >, =V, =AV;+(1-A)V,

3, - <V AVI+(1-AHVE
: <V >?

<V >

ps—py = M (1-M)p(V;-V,)*



6.5 Flow through an Orifice

Class Il problem : = Ap from the momentum eqg'n
or the energy eq'n

Fig. 6-5. Schematic of flow through an orifice.



The continuity: AV, =4,V

The engineering Bernoulli eq'n:

horizontal flow, no shaft work, a,=a,
l 2 1.2 P1 Pz
EY 5= E‘l} 1+ D Iy
pPr=Py 1 o, Ao
or 0 =5 V5l1 (A )+
I Ao o
=5 Voll1+K—( 1 )]

. 1l .2
since [y = ?IEK

2(p—p-)

from which @=A4,V,= AD\/ o {AOE'A)E
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A, DV,
where K=16[1-(55)% 0V 2P

(from Perry’'s Handbook)
Then, we finally have

2(p—p-)

orifice coefficient

Q= D_G:BAU\/

> 3x10*



6.6 Pitot Tube

Fig. 6-6. Schematic of a pitot-static tube.

Class I problem : = Ap from the Bernoulli eq'n
along a streamline

. . Pz
S Vitgh = 5 Virghyt [ AP,

2 2 2 p



Along the streamline A from 1 to 2, V,=0 and /=0

o P TP ;
%p%% -0 . p- © stagnation pressure

Along the streamline B from 1 to 3, V, =V, and [,=0
- D1= D2

J 2(py-ps)
p
— Accurate within a few percent for the velocity at high Re.

Thus, V=

A correction 1s required for the neglected [/, at low Re.



6.7 Diameter of a Free Jet

Class I problem : = the flow geometrv [rom the Bernoullli eq'n

or from the momentum eq'n

Fig. 6-10. Schematic of a free jet.

Assume that the parabolic flow persists right up to the tube exit.

(valid for Re greater than 50 to 100)
2

2 np
The continuity eq'n : n:? Vo= 4J

‘“::-'I-/r ::)2



The Bernoulli eq'n : p,=p. a,=2, a,=1,  and neglecting [,

%ﬁf:—é = <V >{

Therefore, D= (5)""'D=084D

L~-..I|I—L

The momentum eq'n : py=p2=p am B = % B,=1,

w(% <V >-<V >)4p wm-r (D*~DH-F=0

Two contributions to F
The frictional air drag 1s negligible
The horizontal component of the force of p ., on the side

surface of the jet

F=p al:mE {DJ_DE)



Therefore, the momentum eq'n becomes % <V > =<V >,

And we finally have D, = (*7)"’D = 0.866D)

At low Re, substantial velocity rearrangement takes place in the
tube exit region. In fact, the jet diameter is 10 to 15% larger than
the tube diameter.

* Viscoelastic extrudate swell phenomena



6.8 The Rotameter

Fig. 6-11. Schematic of a rotameter.

Eliminate the pressure difference between the energy and
momentum eq'ns = a single eq'n which expresses the velocity (or

flow rate) in terms of geometric and fluid parameters and the losses
and forces.

We need some assumptions on the nature of losses and forces.



The taper is gradual. = A4 : constant

The mean velocity : <V >, = <V >, = Ai
T
Assume that the velocity 1s uniform over each surface (1 and 2).
Ell = 131 - ].
- (—Q yxArds,
B, = {:1;3}3 B f"?l]'"_f‘r?l_r_? AT _ AT
T <V >3 (Q/A )’ Ar—Ap
<V, A .
U’E = = - ( L .:.3

<V >3 Ar-Ap
With no shaft work, the Bernoulli eq'n 1s

P11 P2

%[ul{‘i*’}f—ugilf’ >274 +g(hy—hy)~1y =0

Assume that [y = %Kﬁ{

&) \2
AT_AE



The energy eq'n 1s then

. A .
%p(frm—mffﬁn T (b
+pg{hl_hg}20

The momentum eq'n 1s

pQ[Bl{:lF ::"]_ _BE{-V- }g]'i'(_f.:-'l_f_}g)ﬂr
_pg[ (hg_hl}ﬂ]‘_ Vﬂ]_PBQ'VEZ 0

where pp and V' are the density and volume of the bob.
Substituting for B, and <V >,

Ar
AT_AE

piﬂiﬁl— Y+ (py—ps) +peChy—hs)
T

— gT(FE _ —
A, (pp—p)=0




Eliminating the pressure difference between the Bernoulli
and momentum eq'ns,

l
ZAT

PB
AT p

A}_ﬁﬂﬂ \/ E‘Q-L’H |:: [:'E; B 1}
1+ K p(A/Ap)°

23— A )"3[1+KR( )3]—

A,-A, ~1=0

Or "-_rh) = (A j‘_f:lﬂ}\/ AI; D

Ky @ loss coefficient determined experimentally

* The analysis of Schoenborn and Colburn :

L 28Vg P
{b;.: foﬁ{AE‘_AI;}\/ Aﬂﬂ ':: lj; _]_}

Cr : rotameter coefficient

Ky, and Cp correlate well with Re. (Figs. 6-12, 6-13)



6.9 Flow and Pressure Distribution in a Manifold
Manifold : A device for distributing a liquid or a gas.
The flud i1s conveved through a main tube and ejected

through a series of side ports.

Distribution manifold
Return manifold

Fig. 6-14. Schematic of a manifold.



Pressure recovery:

The change in pressure distribution ? = Calss [l problem

Using the momentum eq'n :

Fig. 6-15. Flow past a single port.

- Neglect the small frictional force on the tube walls.
The flow V. is perpendicular to the flow direction.

Horizontal pipe



2 o2
p2—p1=p(Vi=V3)
Since Vo<V, ps>p ! pressure increase
— Overestimation of the pressure recovery due to the assumption

that The flow V. 1s perpendicular to the flow direction.

Using the energy eq'n :

Fig. 6-16. Assumed streamline pattern near a port.

Neglect the viscous losses



2
P2—D1= o 2 (Vi-V3)

one-half that calculated from the mementum eq'n

We generally use the following relation
po—pp=kpl T-*"'f— ‘Fr"é} ,

¢ 04 — 088 (0.45) for distribution manifold
~ 1.0 for return manifold

Side flow:

The conservation of mass :
If the side port 1s a sharp-edged orifice,

P1tDP2

2

v, = 0.62J [2] ( —p.)



If the side port 1s a long tube of length /,

~ cl 2 P1TDPs
Ve= 44f¢p( 5 Do)

f=0005, i/d~0(10%), then, ,ff ~05~10
In general,
2 It s
V.= EM E (L 121' ——p.)

c - depends on the side port geometry, O(1)

Solve the pressure recovery, the conservation of mass, and the side
port discharging eq'ns for ps, V., V.,

- - 2,2 2 -
Do = ey Dyt 2v° Dt 2PVIK'Y 1+ 20 V") (p1—Pe)
2 = 7 P 3 722 22 D1~
fc+Y kK+vy* 7% (k+Y°) pVikv ¢



2
where V= % << 1, since kc is less than unity and d°/D° is

normally quite small.

Thus, we can expand p- about V=0 to obtain

Do = le+‘h’V1\/ 3p(p,—p.)+ terms of order v

) 2
V.= C\/ i[pl—pf+‘h’1’rl(8p{pl—;J{J” 1]

2
. N
Vo=V~ oL Ve




6.10 Cavitation
Bernoulli eq'n:

Do = pﬁ% p(Vi-V3)+g(h -hy)

It vV, >> Vy,or hy >> hy,
p» < the vapor pressure of the liquid

= the vapor will form (cavitation)

# near the tip of an impellor



6.11 Compressible Flow

Compressibility 1s an important factor when the wvelocity becomes
comparable to the velocity of sound.

Sonic velocity can occur in nozzles and in relief valves.

The speed of sound of an isothermal ideal gas is (p/p)

or (R,T/M,) ",



Pipe flow:

Let's consider the steady-state isothermal flow of an ideal gas in

horizontal smooth pipe:

It 1s found experimentally that the f -Re relation for incompressible
fluids applies to compressible fluids as well.

Re- D<V>p _ 4 (RD*<V >p/4) _ 4w
n nl) n nbm

w - the mass flow rate, independent of axial position

Assume that the viscosity is constant.
Then, Re 1s constant, and therefore so 1s the friction factor (f ).

The losses:

dly = 2<V >



The engineering Bernoulli eq'n for a differential length, assuming
that a=1 | is

1 2. dp 2edz

2de + D +21ff—D 0
For an ideal oas - M,p
Or an deal gas, p = RET

And using the relations, w=nD*Vp/4 and dV°=2VdV

2
p 6wr,r PP D EY

After the integration,

py | DM, . _jL
+
DL 32weR T“‘” pY)

- In =0

, n°D% p, 1-(po/py)”
or 1w = - | 5 ]

16 (4/L/D)-1In(py/p)”




As ps—py, w”—0. Also w”—0, as ps—0.,
Thus, there 1s a maximum throughput at an intermediate

value of p-.

The maxamum 1s found at

dw?  WDpip 1
d(p/p,)° 16 4L, Pz
s —In( )
D
1-(po/py)”
N — i,afii-'l ~ 1=0
(L2 A gy (22
py D P
5 nD” o mD? o dﬂ
or W I { [:' 4 T 2 max } { 4 } f-:'l

P2 :
and Vo .. = 5 . the speed of sound at the exit

Ky
=]




The exit velocity cannot exceed sonic velocity.

If the pressure outside the pipe
< the pressure at the maximum throughput,
the exit velocity remains at the sonic velocity and
there will be a standing expansion shock wave across which
the pressure changes to the outside value at the exit.

The existence of a maximum throughput 1s known as choking.



