8. One-Dimensional Flows

8.1 Introduction

- * Navier-Stokes eq'ns and continuity eq'n are four coupled, nonlinear PDE. ⇒ extremely difficult system
- * In most situations of practical interest, a good deal of approximation is required, often followed by numerical computation.

The general procedure for the solution of flow problems is

- 1. Utilize understanding of the process to determine upon which independent variables each of the velocity components depends.
 - ⇒ kinematic assumptions
- 2. Substitute into the continuity eq'n to ensure that the dependence assumed in step 1 is consistent with continuity.
- Substitute into the momentum or Navier-Stokes equations and solve them.

8.2 Plane Poiseuille Flow

Problem description:

Consider the flow of an incompressible Newtonian fluid in the x direction at a steady state through a rectangular channel of very large aspect ratio.

 $H/W \ll 1$: negligible side wall effects

 $H/L \ll 1$: negligible entrance and exit effects \Rightarrow fully developed

The flow is not turbulent.

Fig. 8-1. Schematic of flow in a plane channel with large aspect ratio.

Direct solution:

The flow is fully developed. \Rightarrow no variations in x direction

$$\frac{\partial v_x}{\partial x} = \frac{\partial v_y}{\partial x} = \frac{\partial v_z}{\partial x} = 0$$

No side wall effects \Rightarrow no variations in z direction

$$\frac{\partial v_x}{\partial z} = \frac{\partial v_y}{\partial z} = \frac{\partial v_z}{\partial z} = 0$$

Therefore, $v_x = v_x(y)$, $v_y = v_y(y)$, $v_z = v_z(y)$

We further anticipate $v_y = v_z = 0$.

The continuity eq'n in Cartesian coordinates is automatically

satisfied.
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$

Navier-Stokes eq'ns:

x component :
$$0 = -\frac{\partial P}{\partial x} + \eta \frac{d^2 v_x}{dv^2}$$

y component :
$$0 = -\frac{\partial P}{\partial v}$$

$$z$$
 component : $0 = -\frac{\partial P}{\partial z}$

Therefore, P = P(x),

and
$$\eta \frac{d^2 v_x}{dy^2} = \frac{dP}{dx}$$

function of y only = function of x only = constant = $\Delta P/L$

where
$$\Delta P = P_{x=L} - P_{x=0} < 0$$

After the integration, we have

$$v_x = \frac{1}{2n} \frac{\Delta P}{L} y^2 + C_1 y + C_2$$

Apply the no-slip boundary conditions to determine C_1 and C_2 .

$$v_x = 0$$
 at $y = \pm H/2$

$$\Rightarrow$$
 $C_1 = 0$ and $C_2 = -\frac{1}{2\eta} \frac{\Delta P}{L} \frac{H^2}{4}$

$$\therefore v_x = \frac{H^2}{8n} \left(-\frac{\Delta P}{L}\right) \left[1 - \left(\frac{2y}{H}\right)^2\right] \qquad \text{: parabolic profile}$$

Fig. 8-2. Velocity profile for laminar flow with a pressure gradient between infinite stationary planes.

The flow rate Q is

$$Q = WH < v_x > = \int_{area} v_x dA = W \int_{-H/2}^{H/2} v_x dy$$

or the average velocity $\langle v_x \rangle$ is

$$\langle v_x \rangle = \frac{1}{H} \int_{-H/2}^{H/2} v_x dy = \frac{H^2}{8\eta H} (-\frac{\Delta P}{L}) \int_{-H/2}^{H/2} [1 - (\frac{2y}{H})^2] dy$$

$$= \frac{H^2}{16\eta} (-\frac{\Delta P}{L}) \int_{-1}^{1} (1 - \xi^2) d\xi = \frac{H^2}{12\eta} (-\frac{\Delta P}{L})$$

Therefore,

$$v_x = \frac{3}{2} < v_x > [1 - (\frac{2y}{H})^2]$$

Symmetry boundary conditions:

$$\tau_{yx} = \frac{dv_x}{dy} = 0$$
 at $y = 0$

Relaxed assumptions:

Kinematic assumption, $v_x = v_x(y)$, $v_y = v_y(y)$, $v_z = v_z(y)$

Then, from the continuity $\frac{\partial v_y}{\partial y} = 0$ or $v_y = \text{constant}$.

Since $v_y = 0$ at $y = \pm H/2$, v_y must be zero everywhere.

The Navier-Stokes eq'ns then reduce to

x component :
$$0 = -\frac{\partial P}{\partial x} + \eta \frac{d^2 v_x}{dy^2}$$

y component :
$$0 = -\frac{\partial P}{\partial y}$$
 : $P = P(x,z)$

z component :
$$0 = -\frac{\partial P}{\partial z} + \eta \frac{d^2 v_z}{dv^2}$$

or x component :
$$\eta \frac{d^2 v_x}{dy^2} = \frac{\partial P}{\partial x}$$

z component :
$$\eta \frac{d^2 v_z}{dy^2} = \frac{\partial P}{\partial z}$$

Integrating the z component eq'n,

$$v_z = \frac{H^2}{8\eta} \left(-\frac{\partial P}{\partial z} \right) \left[1 - \left(\frac{2y}{H} \right)^2 \right]$$

and
$$\langle v_z \rangle = \frac{1}{H} \int_{-H/2}^{H/2} v_z dy = \frac{H^2}{12\eta} \left(-\frac{\partial P}{\partial z} \right)$$

Since there is no net flow in the z direction, $\langle v_z \rangle = 0$,

and therefore,
$$\frac{\partial P}{\partial z} = 0$$
. Finally we have $v_z = 0$

Solution logic:

- Assumptions on the nature of the velocity field. (kinematic assumptions)
- 2. Solve the continuity and Navier-Stokes eq'ns.
- Check the initial assumptions to have internal consistency.

Set of nonlinear PDE

- ⇒ absence of the proof of uniqueness of the solution
- ⇒ the possibility of another solution
- ⇒ requires the experimental check

8.3 Plane Couette Flow (Drag Flow)

Fig. 8-3. Schematic of plane Couette flow.

Kinematic assumption:

$$v_x = v_x(y)$$
, $v_y = v_z = 0$ which satisfies the continuity eq'n.

The Navier-Stokes eq'ns:

x component
$$0 = -\frac{\partial P}{\partial x} + \eta \frac{d^2 v_x}{dy^2}$$
y component
$$0 = -\frac{\partial P}{\partial y} + \eta \frac{d^2 v_x}{dy^2}$$
y component
$$0 = -\frac{\partial P}{\partial z} + \eta \frac{d^2 v_x}{dy^2}$$

$$\Rightarrow P = P(x)$$

Engineering Bernoulli eq'n:

no work, no losses, $\langle v_x \rangle$ is independent of x,

 \therefore P is also independent of x \Rightarrow we assume that $\frac{\partial P}{\partial x} = 0$

Then, we have
$$\frac{d^2v_x}{dy^2} = 0 \implies v_x = C_1y + C_2$$

Boundary conditions:

$$v_x = 0$$
 at $y = 0$ \Rightarrow $C_2 = 0$ $v_x = U$ at $y = H$ \Rightarrow $C_1 = U/H$

Therefore, $v_x = \frac{Uy}{H}$ and the shear stress is

$$\tau_{yx} = \eta(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x}) = \eta \frac{dv_x}{dy} = \eta \frac{U}{H} : \text{ independent of position}$$

8.4 Poiseuille Flow

Consider steady fully developed flow of an incompressible Newtonian fluid in a long, smooth, round tube of radius R.

Fig. 8-4. Schematic of laminar flow in a long smooth, round tube.

Kinematic assumptions (using the cylindrical coordinates):

$$v_z = v_z(r)$$
, $v_r = v_\theta = 0$

The continuity eq'n:

$$\frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0$$
: satisfied

Navier-Stokes eq'ns:

r component:
$$0 = -\frac{\partial P}{\partial r}$$

$$\theta$$
 component: $0 = -\frac{1}{r} \frac{\partial P}{\partial \theta}$

z component:
$$0 = -\frac{\partial P}{\partial z} + \eta \frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right)$$

$$r$$
 and θ component eq'ns $\Rightarrow P = P(z)$

and
$$z$$
 component eq'n $\Rightarrow \frac{1}{r} \frac{d}{dr} (r \frac{dv_z}{dr}) = \frac{1}{\eta} \frac{dP}{dz}$

$$f'n ext{ of } r ext{ only} ext{ f'n of } z ext{ only}$$

Therefore,
$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) = \frac{1}{\eta} \frac{dP}{dz} = \text{constant} = \frac{1}{\eta} \frac{\Delta P}{L}$$

: pressure gradient is linear in pipe length

We rewrite the z component eq'n as

$$\frac{d}{dr}(r\frac{dv_z}{dr}) = \frac{1}{\eta} \frac{\Delta P}{L} r$$

After first integration,

$$r \frac{dv_z}{dr} = \frac{1}{2n} \frac{\Delta P}{L} r^2 + C_1$$

or
$$\frac{dv_z}{dr} = \frac{1}{2n} \frac{\Delta P}{L} r + \frac{C_1}{r}$$

After second integration,

$$v_z = \frac{1}{4\eta} \frac{\Delta P}{L} r^2 + C_1 \ln r + C_2$$

Since v_z is finite at $r = 0 \implies C_1 = 0$

No-slip boundary condition:

$$v_z = 0$$
 at $r = R$ $\Rightarrow 0 = \frac{1}{4n} \frac{\Delta P}{L} R^2 + C_2$

Therefore, the velocity profile becomes

$$v_z(r) = \frac{R^2}{4n} (-\frac{\Delta P}{L})[1 - (\frac{r}{R})^2] = 2 < v_z > [1 - (\frac{r}{R})^2]$$

The average velocity is

$$\langle v_z \rangle = \frac{1}{\pi R^2} \int_{area} v_z dA = \frac{R^2}{8\eta} (-\frac{\Delta P}{L})$$

: equivalent to the Hagen-Poiseuille eq'n

The friction factor:

$$f = \frac{(-\Delta P)R}{\rho < v_z > ^2 L} = \frac{8\eta}{\rho < v_z > R} = \frac{16\eta}{\rho < v_z > D} = \frac{16}{\text{Re}}$$

Range of solution:

The pipe must be long relative to an entry length of approximately $0.055D\,\mathrm{Re}$.

Re < 2100, becomes unstable solution for Re > 2100. (turbulence)

Stability of steady-state solution:

$$\frac{dv}{dt} = (v-1)(v-2) \quad , \qquad v(0) = A$$

steady-state solution: v = 1 and v = 2

transient solution:
$$v(t) = \frac{2(A-1)-(A-2)e^t}{A-1-(A-2)e^t}$$

For
$$A < 2$$
, $v(t) \to 1$ as $t \to \infty$.

For
$$A > 2$$
, $v(t) \to \infty$ as $t \to \ln(\frac{A-1}{A-2})$. (no steady-state)

8.5 Wire Coating

Fig. 8-5. Schematic of wire coating.

$$R_c = R_c(R_w, R_d)$$

 R_c : the ultimate radius of the coated wire

 R_w : the radius of the uncoated wire

 R_d : the die radius

The mass balance on the coating material:

$$Q = V_w(\pi R_c^2 - \pi R_w^2) = \int_{R_w}^{R_d} 2\pi r v_z(r) dr$$
 downstream within the die

$$\Rightarrow R_c = \left[R_w^2 + \frac{2}{V_w} \int_{R_w}^{R_d} r v_z(r) \, dr\right]^{1/2}$$

To obtain $v_z(r)$,

Kinematics:
$$v_z = v_z(r)$$
, $v_r = v_\theta = 0$

⇒ continuity is satisfied

Navier-Stokes eq'n:

z component
$$0 = \eta \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) \right]$$

$$r \frac{dv_z}{dr} = \text{constant} = C_1$$

The second integration :
$$v_z(r) = C_1 \ln r + C_2$$

Apply the boundary conditions to determine C_1 and C_2

$$r = R_w$$
: $V_w = C_1 \ln R_w + C_2$

$$r = R_d$$
: $0 = C_1 \ln R_d + C_2$

$$\Rightarrow C_1 = \frac{V_w}{\ln R_w/R_d} , C_2 = -\frac{V_w \ln R_d}{\ln R_w/R_d}$$

$$\therefore \quad v_z(r) = V_w \frac{\ln r/R_d}{\ln R_w/R_d} \quad : \quad \text{independent of viscosity } \eta$$

Finally we obtain

$$R_c = \left(\frac{R_d^2 - R_w^2}{2 \ln R_o / R_w}\right)^{1/2}$$
 : independent of η and V_w

The force required to pull the wire through the die:

$$F_w = 2\pi R_w L \tau_{rz} \mid_{r=R_w}$$

where
$$\tau_{rz} \mid_{r=R_w} = \eta(\frac{\partial \upsilon_z}{\partial r} + \frac{\partial \upsilon_r}{\partial z}) \mid_{r=R_w} = \frac{\eta V_w}{R_w \ln R_w / R_d}$$

$$\therefore F_w = \frac{2\pi \eta V_w L}{\ln R_w / R_d} < 0$$

8.6 Torsional Flow

Fig. 8-6. Schematic of torsional flow.

 $L\gg R$, neglect end effects

Kinematic assumption:

$$v_{\theta} = v_{\theta}(r)$$
, $v_r = v_z = 0$ \Rightarrow satisfies the continuity

Navier-Stokes eq'n:

$$r ext{ component}$$
 $-\rho \frac{\upsilon_{\theta}^2}{r} = -\frac{\partial P}{\partial r}$

$$\theta$$
 component $0 = \eta \frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} (r v_{\theta}) \right]$

z component
$$0 = -\frac{\partial P}{\partial z}$$
 : P is independent of z

The integration of θ component eq'n gives

$$\frac{1}{r}\frac{d}{dr}(rv_{\theta}) = \text{constant} = C_1$$
 or $\frac{d}{dr}(rv_{\theta}) = C_1 r$

$$\Rightarrow v_{\theta} = \frac{1}{2} C_1 r + \frac{C_2}{r}$$

: increases without bound as r increases

$$C_1 = 0$$

Apply no-slip boundary condition to determine C_2

$$r = R$$
: $v_{\theta} = R\Omega = \frac{C_2}{R}$ $\Rightarrow v_{\theta} = \frac{R^2\Omega}{r}$

The shear stress on the cylinder wall:

$$\tau_{r\theta} \mid_{r=R} = \eta \left[r \frac{\partial}{\partial r} \left(\frac{\upsilon_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \right] \mid_{r=R} = -2\eta \Omega$$

The total torque on the cylinder:

$$G = \int_0^{2\pi} LR^2 \tau_{r\theta} \mid_{r=R} d\theta = -4\pi R^2 L \eta \Omega$$

Pressure and cavitation:

$$r \text{ component eq'n} \Rightarrow \frac{dP}{dr} = \frac{\rho v_{\theta}^2}{r} = \frac{\rho (R^2 \Omega)^2}{r^3}$$

After the integration,
$$P = P_0 - \frac{\rho(R^2\Omega)^2}{2r^2}$$

- $*P_0$: maximum pressure at $r \rightarrow \infty$
- * minimum pressure at the cylinder surface

$$= P_0 - \frac{1}{2} p(R\Omega)^2$$

The cavitation will occur if $P_0 - \frac{1}{2} p(R\Omega)^2 < P_{vp}$

or
$$R\Omega \ge \sqrt{\frac{2(P_0 - P_{vp})}{\rho}}$$

8.8 Tube Flow of a Power-law Fluid

Power-law fluid:

In plane Couette flow : $\eta(\Gamma_s) = K|\Gamma_s|^{n-1}$

General form in three-dimensional flow : $\eta = K \left| \frac{1}{2} \prod_{i=1}^{(n-1)/2} \right|$

Kinematic assumption:

 $v_z = v_z(r)$, $v_r = v_\theta = 0$ \Rightarrow satisfies the continuity

nonzero stress components : $\tau_{rz}(r)$

The momentum eq'ns:

r component: $0 = -\frac{\partial P}{\partial r}$

 θ component: $0 = -\frac{1}{r} \frac{\partial P}{\partial \theta}$

z component: $0 = -\frac{\partial P}{\partial z} + \frac{1}{r} \frac{d}{dr} (r \tau_{rz})$

r and θ components $\Rightarrow P = P(z)$

Then,
$$z$$
 component: $\frac{1}{r} \frac{d}{dr} (r \tau_{rz}) = \frac{dP}{dz} = \frac{\Delta P}{L}$

After the integration, we obtain $\tau_{rz} = \frac{\Delta P}{2L} r + \frac{C_1}{r}$

Since the stress must remain finite at the centerline, $C_1 = 0$

$$\tau_{rz} = \frac{\Delta P}{2L} r$$
 : a general result for fully developed pipe flow

In the pipe flow,
$$\frac{1}{2} \Pi = (\frac{dv_z}{dr})^2 \Rightarrow \tau_{rz} = K \left| \frac{dv_z}{dr} \right|^{n-1} \frac{dv_z}{dr}$$

Therefore,
$$K \left| \frac{dv_z}{dr} \right|^{n-1} \frac{dv_z}{dr} = \frac{\Delta P}{2L} r$$

Since ΔP and $\frac{dv_z}{dr}$ are negative,

$$\frac{dv_z}{dr} = -\left(-\frac{\Delta P}{2KL}\right)^{1/n} r^{1/n}$$

After the integration,

$$v_{z}(r) = \frac{n}{n+1} \left[\frac{R^{n+1}}{2K} \left(\frac{-\Delta P}{L} \right) \right]^{1/n} \left[1 - \left(\frac{r}{R} \right)^{(n+1)/n} \right]$$

and
$$\langle v_z \rangle = \frac{n}{(3n+1)} \left[\frac{R^{n+1}}{2K} (-\frac{\Delta P}{L}) \right]^{1/n}$$

 v_z can be rewritten, using $\langle v_z \rangle$, as

$$v_z(r) = \frac{3n+1}{n+1} < v_z > [1 - (\frac{r}{R})^{(n+1)/n}]$$

The profile is blunter than that for a Newtonian fluid.

Fig. 8-8. Velocity profile in a tube for a solution of polyacrylamide in water.