8. One—Dimensional Flows
8.1 Introduction

* Navier-Stokes eq'ns and continuity eq'n are four coupled,
nonlinear PDE., = extremely difficult system

* In most situations of practical interest, a good deal of approximation
1s required, often followed by numerical computation.

The general procedure for the solution of flow problems is

1. Utilize understanding of the process to determune upon which
independent variables each of the velocity components depends.
= Kkinematic assumptions
2. Substitute into the continuity eq'n to ensure that the dependence
assumed 1n step 1 1s consistent with continuity,
J. Substitute into the momentum or Navier-Stokes equations and
solve them.



8.2 Plane Poiseuille Flow

Problem description:

Consider the flow of an incompressible Newtonian {luid in the x
direction at a steady state through a rectangular channel of very

large aspect ratio.

H/W <1 : negligible side wall effects
H/L <1 : negligible entrance and exit effects = fully developed

The flow is not turbulent.
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Fig. 8-1. Schematic of flow in a plane channel with large aspect
ratio.



Direct solution:

The flow is fully developed. = no variations in x direction

Jv, dv,  Jduv. -0
ox  ox  dx

No side wall effects = no variations in z direction

dv,  duv, &UE_O
dz  dz  dz

Therefore, v,=v,(¥), v,=v,(y), v.=v.(¥)

We further anticipate v,=uv_.=0

The continuity eq'n in Cartesian coordinates 1s automatically

o Jv, odv, au.
satishied, + — + = =0

0 X TN 0z




Navier-Stokes eq'ns:

2
. opP _du,
0= - + ,
x component : 0 S e
D
v component : 0= —&y
P
z component . 0= 5=
Therefore, P = P(x) ,
dv, dP
and n e = x
function of v only = function of x only = constant

where ﬁP:PI=L_Px=[J <0

After the integration, we have

UzlﬂP
*oZn L

y2+cly+cz

AF/L



Apply the no-slip boundary conditions to determine €, and C..
v,=0 at v==xH/2

2
= Cl:D aI‘IE] 62:_2]-11&51?1'
_H- M"' M1- (_J* )] . parabolic profile

U, = 811
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Fig. 8-2. Velocity profile for laminar flow with a pressure gradient
between infinite stationary planes.



The flow rate @ is
/2
Q=WH<v, > = f v,.dA = Wf v,dy
areg -H/2

or the average velocity <v,.> 1s

- H2 - HE H2 _y 5
<> Hf v dy BHH(—)f 1) dy
__H®, AP H®
T :-f (1-8")dt = 15 (-~ AP

Therefore,

2y
H}]

L:_1.=% <v,>[1-(

Symmetry boundary conditions:

=0 at v=20



Relaxed assumptions:

Kinematic assumption, v,=v.(y), v,=v,(y), v.=v.(¥)

ov

Then, from the continuity a; - =0 or v, = constant .

Since v, =0 at y==*H/2 , v, must be zero everywhere.

The Navier-Stokes eq'ns then reduce to

2
A 0P _du,
X component @ 0= ox R v’
v component © 0= —g—f : P=P(x,z)

d“v.
0 o P U,

L

Z component - 5 - +1 dyz




dv, 4p

or X component @ T e ox
Coopdve o ap
Z component @ 1 dyz e

Integrating the z component eq'n,

CHY, 9P ., 2y .2
v.= g g - ()7

_ 1 CHY, 4P
and <v_.> = 72 f_H:____EU;Cf}’— 1211( 5 - )

Since there is no net flow in the z direction, <v.> =0,

and therefore, g—j = 0. Finally we have v.=0



Solution logic:

1. Assumptions on the nature of the wvelocity field.
(kinematic assumptions)

2. Solve the continuity and Navier-Stokes eq'ns.

3. Check the mitial assumptions to have internal consistency.

Set of nonlinear PDE
= ghsence of the proof of uniqueness of the solution
= the possibility of another solution
= requires the experimental check



8.3 Plane Couette Flow (Drag Flow)
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Fig. 8-3. Schematic of plane Couette flow.

Kinematic assumption:
v, =vy), v,=v.=0 which satisfies the continuity eq'n.

e

The Navier-Stokes eq'ns:

2
9P _duv,
X component 0= 3 x +1 dyg
Vv component 0= —g—f ,  Z component 0= - gf



= P=Plx)
Engineering Bernoulli eqg'n

no work, no losses, <uv,> is independent of X,

P is also independent of x = we assume that % =0
- dv,
['hen, we have > =0 = v,=Cy+C,
dy
Boundary conditions:
UI:O at y:O = 63:0

v.=U at y=H = C,=UH

Therefore, U, = % and the shear stress 1s
dv, dv, _ dvu, [7

LI . independent of position



8.4 Poiseuille Flow

Consider steady fully developed flow of an incompressible
Newtonan fluid in a long, smooth, round tube of radius [?.

D —— — —
——i
r —————
H e
| ———
= I ——"—'——-'.‘z
——l—
———il
——
——
e — — p—

Fig. 8-4. Schematic of laminar flow in a long smooth, round tube.

Kinematic assumptions (using the cvlindrical coordinates):

i!-"._':E-"._'{"m‘JII ' ‘:':UE:U



The continuity eq'n:

1 o

1 31?5 aUJ

(rv,)+—
-

r o r 08 | oz

Navier-Stokes eq'ns:

=0 : satished

r component: 0= -

8 component: 0= -

Z component: 0= - &6‘

r and 0 component eq'ns = P=P(z)

and z component eq'n = (r—=) = — =

['n of r only [‘n of =z only



e 1 d, dv. —1dP _ _ 1 AP
['herefore, . dr(r ar ) = N de constant = n L

. pressure gradient 1s linear in pipe length

We rewrite the =z component eq'n as

d{ dl_.?: _lﬁ
r ) = r

dr dr n L
After first integration,

d”:: l ﬁPrz
dr on L

dv- _ 1 AP C1
d- ~on LT
After second mtegration,

, - L AP
= 4n L

+Cl

I

or

.T'2+ Cllnr+ Cg



Since v. is finite at r=0 = ;=0

No-shp boundary condition:

1 AP

v.=0 at r=R — UZIHTREWLCE
Therefore, the velocity profile becomes

y () = R _AP _¢ A2 _ e N2

v_(r) 411{ 7 )1 {R}] 2<v._>[1 (R)]
The average velocity 1s

1 L R® . AP
<v.> = =y LIWUEHA— 3N ( i7 )
. equivalent to the Hagen-Poiseuille eq'n
The friction factor:
(-AP)R 31 B 161 16

. L2 = A = — =
p<v.>"L p<v.>R p<v.>D Re



Range of solution:
The pipe must be long relative to an entry length
of approximately 0.055D Re .
Re < 2100, becomes unstable solution for Re > 2100.
(turbulence)

Stability of steady-state solution:

dv _ _ -
dr =(v-1)v-2) v(0)=A

steadv-state solution: v=1 and v=2
20A-1)-(A-2)e’
A-1-(A-2)e’
For A < 2, v(t) — 1 ast — oo,

transient solution: v(t) =

.14._]_ }
A-2° 7

For A > 2, v(f) — @ ast — Inl(

(no steady-state)



3.5 Wire Coating

Fig. 8-5. Schematic of wire coating.

R.=R.R,IR,

. : the ultimate radius of the coated wire
I, : the radius of the uncoated wire

I, : the die radius



The mass balance on the coating material:
5 " R”I
Q=V,mR>-nR.) = fﬁ_ 2nrv . (r)dr

downstream within the die

Ly

I-:| :3 J- -l.:|
= R =R +—= ro.(r)dr] -
L i ]I-r 7 =
w

To obtain v.(r),
Kinematics: v.=v.(r), v,=vg=0
= continuity 1s satisfied
Navier-Stokes eq'n:
1 d

dv .

7 component 0=nl (r

rodr dr

)]



dv -
dr

The second integration : v.(r) = CyInr+C,

After the first integration, r = constant = C,

Apply the boundary conditions to determine €, and Cs
-"':Rw: Vw=Cllan+Cg
F:Rd: O:CllﬂRd+Cg

V., - V,Inlt,
7 OTTRJR. 0 2T TThRUR,
Inr/IR
v(r)=V SaEEa mndependent of viscosity n

Y InR,/R4
Finally we obtain

R~ R
2InRkR /R,

R.=( ) e independent of n and V,

o



The force required to pull the wire through the die:
Fm - 2]IR1L“L.EI'..T | r=1rn,

a U,;;' a UJ" HLFw

where T,.| .5 =1l ar | o= ) g = R,InR /R,

Elﬂ-ﬂ;w‘{'
Fw o In Ru«_.-’f!:r‘?.;f - U




8.6 Torsional Flow

Fig. 8-6. Schematic of torsional flow.

L> IR, neglect end ellects



Kinematic assumption -
vg=vglr), v,=v.=0 = satisfies the continuity

Navier-Stokes eq'n

r component —[Ilﬂ = - or
] r or
_.drl d
8 component 0=n r | - ar (rvg)]
9P . o
Z component 0= ey . P 1s independent of =
The integration of 8 component eq'n gives
1 d _ _ d _
- dr (rvg) = constant = C, or - (rvg) = Cyr
1 C,
Z Uty Clr+?

. increases without bound as r increases
Cl — O



Apply no-slip boundary condition to determine Cs

. 2
r:R: Uﬂzm:f = L"H: !'r'is-g

The shear stress on the cylinder wall -

_ d Ug 1 &U‘,- L
T:ﬂlr=ﬁ“_n-[r 5‘?"{ - }+F 50 ]|r=ﬁ“_ 218

The total torque on the cylinder :
2|

G= | LR’T 4| , pdd = —4nR’LNQ



Pressure and cavitation :

2 24 2
pv
r component eq'n = ab _ g p(Rgm

Cf."‘ r I

p(R°Q)°

q‘r_u

=

After the integration, P=P,-

# Py ¢ maximum pressure at r—>oo

# minimum pressure at the cvlinder surface

- Pﬂ—%p(m)g

The cavitation will occur if Pﬂ—% pl RO° < P,

2(P,-P,)

p

L

or I7% _¢



8.8 Tube Flow of a Power-law Fluid

Power-law fluid :

In plane Couette flow : n(T')=K|T "

-1)2
. ‘ ‘ . . 1 0 ,
(eneral form in three-dimensional flow @ n=K ‘E ]I‘
Kinematic assumption -
v.=v.r), v,.=vg=0 = satisfies the continuity

nonzero stress components @ T,.(r)

The momentum eq'ns :

. . dF
r component: 0= 5
. 1 4
8 component: 0= Ty
. - dFP 1
z component: 0= 5= (rt,.)



r and 0 components = P=P(z)

- o1 .d _dP _ AP
['hen, =z component: - a‘r{ﬂ’f)_ - =T
: : . C
After the integration, we obtain T,.= AP e+ —
= 2L I
Since the stress must remain finite at the centerline, C,=0
T,.= gf r ©a general result for fullv developed pipe flow
n—1
" . 1 _ & 2 _ ‘ d”; d”;
In the pipe flow, > I = ( ar ) = T,.=K ar ar
- dvo.|"" dv. AP
['herefore, K‘ ar g - or "
dv - .
Since AP and g are negative,
dUJ _ ( B ﬂP } l.-"hr 1/n
dr 2KL



After the integration,

__n R"™ AP im I\ (n+lVn
. n R"Y AP im

v. can be rewritten, using <uv.> as
an+1 i
n+1 R

The profile 1s blunter than that for a Newtoman fluid.

fn—lrh]

v.(r) = <v>[1-(
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Fig. 8-8. Velocity profile in a tube for a solution of polyacrylamide

In water.



