9. Accelerating Flow

9.1 Introduction

Consider

- * a transient startup problem for an incompressible Newtonian fluid flow
- * the role of the inertial terms in the Navier-Stokes eq'ns
- * the solution of a P.D.E.

We shall first state the solution without proof and examine the important physical consequences.

9.2 Problem Description

Fig. 9-1. Schematic of a plate in an infinite extent of fluid.

- * For all time $t \le 0$, the fluid and plate are at rest.
- * At $t = 0^+$, the velocity of the plate in the x direction changes suddenly to a value U.

Kinematic assumption:

$$v_x = v_x(y,t), \quad v_y = v_z = 0$$

 $v_x = v_x(y,t)$, $v_y = v_z = 0$: satisfies the continuity eq'n

Navier-Stokes eq'ns:

* a drag flow, no imposed pressure gradient, no change in cross section $\Rightarrow \partial P/\partial x = 0$

x component
$$p \frac{\partial v_x}{\partial t} = \eta \frac{\partial^2 v_x}{\partial y^2}$$

y component
$$0 = -\frac{\partial P}{\partial y}$$

z component
$$0 = -\frac{\partial P}{\partial z}$$

y and z components $\Rightarrow P$ is constant

x component eq'n: * contains a nonzero inertial term

- * linear in v_x
- * diffusion eq'n (cf. diffusion of mass and heat)

Initial condition:
$$v_x = 0$$
 at $t = 0$ $y \ge 0$

Boundary conditions:
$$v_x = U$$
 at $y = 0$ $t > 0$

$$v_x = 0$$
 at $y = \infty$ $t < \infty$

9.3 Boundary Layer

The solution of x component eq'n:

$$v_x(y,t) = U[1-\text{erf}(\frac{y}{\sqrt{4\eta t/\rho}})]$$

where erf $(\zeta) = \frac{2}{\sqrt{\pi}} \int_0^{\zeta} e^{-\xi^2} d\xi$: the error function

Fig. 9-2. Velocity as a function of the combined variable $y/\sqrt{4\eta t/p}$ for a plate suddenly set in motion.

*
$$\frac{v_x}{U}$$
 vs. $\frac{y}{\sqrt{4\eta t/\rho}}$
* $v_x \approx 0$ for $y \approx 2\sqrt{4\eta t/\rho}$

At any time the influence of the wall is transmitted by viscous shearing only a finite distance into the fluid.

The distance is proportional to $\sqrt{\frac{\eta}{\rho}}t$.

The wall region, where viscous forces are important, is known as the boundary layer.

9.4 Dimensional Analysis (Similarity) Solution

Six variables (v_x , U, t, y, ρ , η) and three dimensions.

Therefore, there can be at most three independent dimensionless

groups.
$$\Rightarrow \frac{v_x}{U}, \frac{y^2 \rho}{\eta t}, \frac{yU\rho}{\eta} \Rightarrow \frac{v_x}{U} = f(\frac{y^2 \rho}{\eta t}, \frac{yU\rho}{\eta})$$

Let's introduce a dimensionless velocity $u = v_x/U$. The x eq'n then becomes

$$p \frac{\partial u}{\partial t} = \eta \frac{\partial^2 u}{\partial y^2}$$

and the boundary conditions become

$$u = 0$$
 at $t = 0$ $y \ge 0$
 $u = 1$ at $y = 0$ $t > 0$
 $u = 0$ at $y = \infty$ $t < \infty$

 \Rightarrow u (or v_x/U) is not a function of U.

$$\therefore \frac{v_x}{U} = f(\frac{y^2 p}{\eta t}) \quad \text{or} \quad \frac{v_x}{U} = f(\frac{y}{\sqrt{\eta t/p}})$$
relative relative velocity distance

A velocity profile, in which the relative velocity is a function only of a relative distance, is called a similar profile, or a similarity solution.

Let's define a new variable $\zeta = \frac{y}{\sqrt{4nt/\rho}}$: similarity variable

Then,
$$\frac{\partial v_x}{\partial t} = \frac{dv_x}{d\zeta} \frac{\partial \zeta}{\partial t} = -\frac{y}{\sqrt{16\eta t^3/\rho}} \frac{dv_x}{d\zeta}$$
$$\frac{\partial v_x}{\partial y} = \frac{dv_x}{d\zeta} \frac{\partial \zeta}{\partial y} = \frac{1}{\sqrt{4\eta t/\rho}} \frac{dv_x}{d\zeta}$$
$$\frac{\partial^2 v_x}{\partial y^2} = \frac{d}{d\zeta} \left(\frac{\partial v_x}{\partial y} \right) \frac{\partial \zeta}{\partial y} = \frac{1}{4\eta t/\rho} \frac{d^2v_x}{d\zeta^2}$$

Substituting these relations into the x eq'n, we obtain the ODE:

$$-2\zeta \frac{dv_x}{d\zeta} = \frac{d^2v_x}{d\zeta^2}$$

The initial and boundary conditions:

$$v_x = U$$
 at $\zeta = 0$

$$v_x = 0$$
 at $\zeta = \infty$

Solving the above ODE,

$$\frac{d}{d\zeta}(\ln\frac{dv_x}{d\zeta}) = -2\zeta$$
 or $\frac{dv_x}{d\zeta} = C_1e^{-\zeta^2}$

The second integration then gives

$$v_x = C_1 \int_0^{\zeta} e^{-\zeta^2} d\zeta + C_2$$

After applying the B.C. to determine C_1 and C_2 ,

$$v_x(y,t) = U[1-\text{erf}(\frac{y}{\sqrt{4nt/\rho}})]$$