
Next: Partial Differential Equations Up: Numerical Analysis for Chemical Previous: Numerical Differentiation and Integration

Subsections

Runge-Kutta Methods
Euler's Method
Improvement of Euler's Method
Runge-Kutta Method
Systems of Equations
Adaptive Runge-Kutta Method

Stiffness and Multistep Methods
Stiffness
Multistep Methods

Boundary-Value and Engenvalue Problems
General Methods of Boundary-Value Problems
ODEs and Eigenvalues with Libraries and Packages

Engineering Applications: Ordinary Differential Equations

Ordinary Differential Equations
Differential equation is 

differential equations : composed of an unknown function and its derivatives. 
rate equations : it expresses the rate of change of a variable as a function of variables and parameters. 

Variables are divied by 

dependent variables 
independent variables 

Differential equation is classified as 

ordinary differential equation : one independent variable 
partial differential equation : more than one independent variables 

A differential equation is usually accompanied by auxiliary conditions to specify the solution completely. For first-order ODEs an initial value is 
required to determine the constant and obtain a unique solution. 

initial-value problem : all conditions are specified at the same value of the independent variable. 
boundary-value problem : specification of conditions occurs at different values of the independent variable. 

Runge-Kutta Methods
Ordinary differential equation is 

The solution is 

or, in mathmatical terms, 

(7.1)



The slope estimate of  is used to extrapolate from an old value  to a new value  over a distance . 

Euler's Method
Euler's method is 

More smaller step-size gives more accurate solution but further step-size reduction requires much computation times. 

Improvement of Euler's Method
A funcdermental source of error in Euler's method is that the derivative at the beginning of the interval is assumed to apply across the entire interval. 

Heun's Method : average two derivatives which are obtained at the initial point and the end point. The slope at the beginning of an interval 

is used to extrapolate linearly to 

This equation is called a predictor equation. The slope at the end of the interval 

Thus, the two slopes can be combined to obtain an average slope for the interval 

Figure 7.1: Graphical depiction of a one-step method.
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This average slope is then used to extrapolate linearly from  to 

which is called a correct equation. See the figure 25.9 at p 688. 

The Heun method is a predictor-corrector approach. 

The Midpoint Method : use Euler's method to predict a value of  at the midpoint of the interval. 

This slope is then used to extrapolate linear form from  to 

Runge-Kutta Method
Runge-Kutta methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives. 

where  is called an increment function, which can be interpreted as a representative slope over the interval. The increment function is 

where the 's are constants and the 's are 

Notice that the 's are recurrence relationship. Because each  is a functional evaluation, this recurrence makes RK methods efficient for computer 
calculations. 

Second-order Runge-Kutta Methods 

The second-order version of RK method: 
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where 

To determine values for the constant , , , and , use a Taylor's series for  in terms of  and 

where  is 

Then, 

The basic strategy underlying Runge-Kutta methods is to use algebraic manipulations to solve for values of , , , and  that make eq 

(7.13) and eq (7.17) equivalent. 

The Taylor's series for a two-variable function is 

This gives 

By correcting terms 

Comparing this equation with eq (7.17) 
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Because these three equations contain the four unknown constants, we must assume a value of one of the unknowns to determine the other three. 
Suppose that we specify a value for . 

Also we can choose an infinite number of values for , there are an infinite number of second-order RK methods. 

Heun Method with a Single Corrector( ) 

Assume 

These parameters yield 

where 

Midpoint Method( ) 

where 

Ralston's Method ( ) 

where 
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See the figure 25.14 at p 699. 

Fourth-order Runge-Kutta Methods 

The classical fourth-order RK method 

where 

See the figure 25.16 at p 704. 

Systems of Equations
The procedure for solving a system of equations simply involves applying the one-step technique for every equation at each step before proceeding to 
the next step. 

Adaptive Runge-Kutta Method
Automatically adjust the step size to avoid overkills 
Need an estimate of the local truncation error be obtained at each step 

Strategies for adaptive RK 

Use different step sizes to calculate local error 
Use different order of RK method to calculate local error 

Stiffness and Multistep Methods
Stiffness
A stiffness system is one involving repidly changing components together with slowly changing ones. In many cases, the rapidly varying components 
die away quickly, after which the solution becomes dominated by the slowly varying components. 

An example of a single stiff ODE is 
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If , 

The solution is initially dominated by the fast exponential term ( ). After a very short period , this transient dies out and the 

solution becomes dictated by the slow exponential ( ). 

Step size consideration: Insight into the step size required for stability for a solution. 

If , 

Thus, the solution starts at  and asymptotically approaches zero. 

Use Euler's method 

Substituting 

or 

The stability of this formula clearly depend on the step size . That is,  must be less than 1. 

For the fast transient part, the step size to maintain stability must be very small. In addition, an even smaller step size is required to obtain an accurate 
solution. 

Implicit method: developed by evaluating the derivative at the future time 

Substituting the derivative term 
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which can be solved for 

For this case, regardless of the size of the step,  as . See the figure 26.2 at p 722. 

Multistep Methods

The one-step methods utilize information at a single point  to predict a value of the dependent variable  at a future point . 

Alternative approaches, called multistep methods, are base on information of the previous points. The curvature of the lines connecting these previous 
values provides information regarding the trajectory of the solution. The multistep methods exploit this information to solve ODEs. 

The non-self-starting Huen method 

The Heun method use Euler's method as predictor 

and the trapezoidal rule as a corrector 

Thus, the predictor and the corrector have local truncation errors of  and , repectively. Consequently, one way to improve Heun's 

method is to develop a predictor that has a local error of . This can be accomplished by using Euler's method and the slope at , and extra 

information from a previous point , as in 

Notice that eq. (7.50) attains  at the expense of employing a larger step size, . In addition, eq. (7.50) is not self-starting because it 

involves a previous value of the dependent variable . Because of the fact it is called the non-self-starting Heun method. 

Derivation of non-self-starting Heun method 

Consider the general ODE 

Integrating between limits at  and 
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Integrated value is 

Use trapezoidal rule to integrate the second term at right hand side 

which is the corrector equation for the Heun method and the trapezoidal rule gives the local truncation error of . 

A similar approach can be used to derive the predictor. For this case, the integration limits are from  to . 

which can be integrated and rearranged to yield 

Use the first Newton-Cote open integration formula 

which is called the midpoint method. 

which is the predictor for the non-self-starting Heun. 

Integration formulas 

The non-self-starting Heun method employs an open integration formula (the midpoint method) to make an initial estimate. This predictor step requires 
a previous data point. Then, a closed integration formula (the trapezoidal rule) is applied iteratively to improve the solution. 

Newton-Cotes formulas estimate the integral over an interval spanning several points. In constrast, the Adam formulas use a set of points from an 
interval to estimate the integral solely for the last segment in the interval. See the figure 26.7 p 734. 

Newton-Cotes Formulas 
Open formulas 

if 
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which is referred to as the midpoint method and was used previously as the predictor in the non-self-starting Heun method. 
Closed formulas 

if 

which is equivalent to the trapezoidal rule. 
Adams Formulas : Many popular computer algorithms for multistep solution of ODEs are based on these methods. 

Open formulas(Adams-Bashforth) : start with a forward Taylor series expansion at 

which can also be written as 

Use a backward difference 

Then 

Closed formulas(Adams-Moulton) : start with a backward Taylor series around 

Solving for  yields 



Use a difference to approximate the first derivative 

Then 

Boundary-Value and Engenvalue Problems
Boundary-value : which is specified at the extreme points or boundaries of a system. 

Classification of boundary condition 

Dirichlet condition : the value of independent variable is specified at a boundary 
Neumann condition : the value of the derivative of independent variable is specified at a boundary 

General Methods of Boundary-Value Problems
The shooting method: based on converting the boundary-value problem into an equivalent initial-value problem. A trial-and-error approach is then 
implemented to solve the initial-value version. 

Finite-difference methods: finite divided differences are substituted for the derivatives in the original equation. Thus, a linear differential equation is 
transformed into a set of simultaneous algebraic equations. 

ODEs and Eigenvalues with Libraries and Packages
Matlab 

ode23 
ode45 

IMSL 
IVPRK 
IVPAG 
BVPFD 
BVPMS 

Engineering Applications: Ordinary Differential 
Equations
See the textbook 

Next: Partial Differential Equations Up: Numerical Analysis for Chemical Previous: Numerical Differentiation and Integration
Taechul Lee 
2001-11-29


