Next Up Previous Contents Next: Contents Up: HOME

Numerical Analysis for Chemical Engineers

Taechul Lee (tclee@prosys.korea.ac.kr)

- Contents
- Modeling, Computers, and Error Analysis
 - Mathematical Modeling and Engineering Problem-Solving
 - A Simple Mathematical Model
 - Computers and Software
 - The Software Development Process
 - Algorithm Design
 - Program Composition
 - Quality Control
 - O Approximations and Round-Off Errors
 - Significant Figures
 - Accuracy and Precision
 - Error Definitions
 - O Truncation Errors and the Taylor Series
 - The Taylor Series
 - Using the Taylor Series to Estimate Truncation Errors
 - Numerical Differentiation
- Roots of Equations
 - O Backeting Methods
 - Graphical Methods
 - The Bisection Method
 - The False-Position Method
 - O Open Methods
 - Simple Fixed-point Iteration
 - The Newton-Raphson Method
 - The Secant Method
 - Multiple Roots
 - Systems of Nonlinear Equations
 - Roots of Polynomials
 - Polynomials in Engineering and Science
 - Computing with Polynomials
 - Conventional Methods
 - Root Location with Libraries and Packages
 - O Engineering Applications: Roots of Equations
- Linear Algebraic and Equations
- Gauss Elimination
 - Solving Small Numbers of Equations
 - Naive Gauss Elimination
 - Pitfalls of Elimination Methods
 - Techniques for Improving Solutions
 - Complex Systems
 - Nonlinear Systems of Equations
 - Gauss-Jordan
 - o LU Decomposition and Matrix Inversion
 - LU Decomposition
 - The Matrix Inverse
 - Error Analysis and System Condition
 - O Special Matrices and Gauss-Seidel
 - Special Matrices
 - Gauss-Seidel
 - Linear Algebraic Equation with Libraries and Packages
 - O Engineering Applications: Linear Algebraic Equations
- Optimization
 - O One-dimensional Unconstrained Optimization
 - Golden-Section Search
 - Quadratic Interpolation

Newton's Method

- O Multidimensional Unconstrained Optimization
 - Direct Methods
 - Gradient Methods
- Contrained Optimization
 - Linear Programming
 - Optimization with Packages
- Engineering Applications: Optimization
- Curve Fitting
 - O Least-Squares Regression
 - Linear Regression
 - General Linear Least-Squares
 - Nonlinear Regression
 - Interpolation
 - Newton's Divided-Difference Interpolating Polynomials
 - Lagrange Interpolating Polynomial
 - Spline Interpolation
 - Fourier Approximation
 - Curve Fitting with Sinusoidal Functions
 - Fourier Integral and Transform
 - Discrete Fourier Transform (DFT)
 - Fast Fourier Transform (FFT)
 - The Power Spectrum
 - Curve Fitting with Libraries and Packagies
 - O Engineering Applications: Curve Fitting
- Numerical Differentiation and Integration
 - Newton-Cotes Integration of Equations
 - The Trapezoidal rule
 - Simpson's rule
 - O Intergrations of Equations
 - Romberg integration
 - Gauss Quadrature
 - Improper integrals
 - Numerical Differentiation
 - High-accuracy differentiation formulas
 - Richardson extrapolation
 - Derivatives of unequally spaced data
 - Numerical integration/differentiation formulas with libraties and packages
 - Engineering Applications: Numerical Integration and Differentiation
- Ordinary Differential Equations
 - O Runge-Kutta Methods
 - Euler's Method
 - Improvement of Euler's Method
 - Runge-Kutta Method
 - Systems of Equations
 - Adaptive Runge-Kutta Method
 - Stiffness and Multistep Methods
 - Stiffness
 - Multistep Methods
 - O Boundary-Value and Engenvalue Problems
 - General Methods of Boundary-Value Problems
 - ODEs and Eigenvalues with Libraries and Packages
 - Engineering Applications: Ordinary Differential Equations
- Partial Differential Equations
 - Finite Difference: Elliptic Equations
 - The Laplace Equations
 - Solution Techniques
 - Boundary Conditions
 - The Control Volume Approach
 - Finite Difference: Parabolic Equations
 - The Heat Conduction Equation
 - Explicit Methods
 - A Simple Implicit Method
 - The Crank-Nicholson Method
 - Finite Element Method
 - Calculus of variation
 - Example: The shortest distance between two points
 - The Rayleigh-Ritz Method
 - The Collocation and Galerkin Method

- Finite elements for ordinary-differential equations
- Engineering Applications: Partial Differential Equations
- Using Matlab
 - 이 설치
 - o Matlab 기초
 - 배열
 - Customization
 - Summary 이 제어문
 - if, else, and elseif
 - switch
 - while
 - for
 - break
 - Summary
 - o 함수만들기
 - Matlab에서 그림 그리기
 - plot 명령어
 - 고급 plot 명령어
 - 그림을 그리는 다른 명령어들

이 예제

- Linear Equation
- Using Fortran
 - o 설치 및 사용법
 - MS Window에서 작동하는 포트란
 - Unix 머신에서 작동하는 포트란
 - Summary
 - 이 데이터와 입출력
 - 기본적 구성
 - 기본적 데이터 타입
 입력과 출력에 관해
 - G S J Z S S N 20
 - RedirectionDimension
 - 데이터 초기화
 - Summary
 - ㅇ 제어문
 - STOP문
 - GOTO문
 - PAUSE문
 - CONTINUE문
 - CALL문
 - RETURN문
 - IF문
 - DO문
 - Summary
 - ㅇ 부프로그램
 - FUNCTION
 - **SUBROUTINE**
 - 부프로그램 컴파일
 - 라이브러리 만들기
 - EXTERNAL 문 사용하기
 - IMSL 사용하기
- About this document ...

Next: Contents Up: HOME Taechul Lee 2001-11-29