Chapter 10. Free radical polymerization (or Chain-growth

polymerizaion)

(1) Initiation : Free radicals must be introduced into the system to start the reaction

I kd → 2R•

Where I : initiator

R : primary radical

 k_d : the specific rate constant : $10^{-4}{\sim}\,10^{-6}\text{sec}^{-1}$

The rate of radical production is

 $d [R\bullet]/dt = 2k_d[I]$

The rate of initiation R_i• is

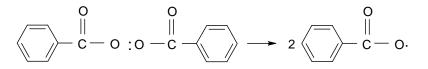
 $R_i = 2f \, k_d [I]$

where f = initiator efficiency \leq 1.0

• the fraction of all radicals generated that are captured by monomers

Initiation reaction :

$$R\bullet + CH_2 = C \longrightarrow R CH_2 C\bullet$$


 $R \bullet + M - K_i \bullet M_i \bullet$

(2) Propagation : products are formed, and the site of the reactive center changes but the number of active centers is not changed

(a) Addition Reactions

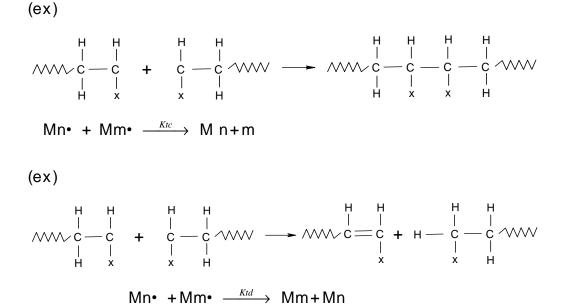
$$R^{\bullet} + M \xrightarrow{ki} M1^{\bullet}$$

(ex) Benzoyl Peroxide:

Azobisiobutyronitrile (ALBN)

Assume : molecular size

rate constant, kp


 \therefore Rp = Kp [M•][M] : Rate of Propagation

 $\begin{array}{l} {\sf Kp}: 2^{nd} \, \text{-oder rate constant}: [{\sf conc, time}]^{-1} \\ \qquad \rightarrow 10^2 \, \text{-}\, 10^4 \, (\text{L/mol.s}) \\ \\ {\sf where \ [M\bullet]} \ \text{is the sum of the concentrations of all} \\ \\ {\sf monomer - ended radicals in the system.} \end{array}$

(b) Atom Transfer Reactions (Chain Transfer Reaction) (ex) chlorination

 $\begin{array}{rcl} \mathsf{CI}_2 & \xrightarrow{200} & 2\mathsf{CI} \bullet \\ \mathsf{CI} \bullet & + & \mathsf{CH}_4 & \rightarrow & \mathsf{HCI} + & \bullet \mathsf{CH}_3 \\ \mathsf{CH}_3 \bullet & + & \mathsf{CI}_2 & \rightarrow \mathsf{CH}_3\mathsf{CI} + & \mathsf{CI} \bullet \end{array}$

(3) Termination : the squence of monomer additions is terminated by the mutual annihilation of two radicals.

Ktd: disproportionation rate constant.

 Termination may also occur a mixture of disproportionation and combination.

> Mn• +Mm \xrightarrow{Ktd} dead polymer Kt = Ktc + Ktd (overall rate constant) Rtc = 2 Ktc[M•]² Rtd = 2 Ktd[M•]² Rt = 2 Kt[M•]² (Kt = 10⁶-10⁸ L/mol.sec)

(4) Rate of polymerization

 the rate of radical generation = the rate at which radicals undergo mutual annihilation.
the concentration of radicals in the system will reach a steady value.

We assume that

Ri = Rt at steady state $d[M\cdot]/dt = 0$ at steady state

$2fKd[1] = 2 Kt [M^{\bullet}]^{2}$	(6-26)
$[M^{\bullet}] = [fKd[I]/Kt]^{1/2}$	(6 - 27)

 $^\circ$ The rate of polymerization is take to be the rate of disappearance of monomer, which is d[M]/dt.

- The rate of propagation is proportional to the concentration of the monomer and the square root of the concentration of the initiator.

- The rate of termination is proportional to the concentration of the initiator.