Chapter 5. Crystallinity

- Regular chain structure. ex) iso -PP, iso -PS
- Hydrogen bonding Strong dipole interaction. ex) nylon -6

5.2 The Fringed - Micelle Model

- · solid state polymer
 - completely amorphous i)
 - ii) partially crystalline
 - iii) almost completely crystalline.

crystallite(fringed -micelle)

amorphous region

Crystalline region

-several hundred Å

If they are stretched→increase crystallinity.

- crystallites tie the individual chains together

- the crystallites will generally melt before the polymer degrades

5.3 Folded -chain Crystallites

- the growth of single crystals from dilute solution

- i) regular reentry model
- ii) adjacent reentry model
- iii) irregular or "switchboard" reestry model

-	가 가	가
growth rate 가	more perfect crystal	

- Chain folding why? 1000 Å 7 기00 Å

folding

- Solution state : lamellae (plate like polymer crystal)
- Melt state : a model combining the folded chain lamellae with the interlamellar amorphous material.

- 5.4 The effects of crystallinity on polymer properties
- · LDPE (low density polyethylene)
 - long branched branches : made by high -pressure process.(25,000 50,000 psi)

```
\delta=0.915g/cm<sup>3</sup> 42 -53% crystallinity Tm = 110 -120 °C
```

- · LLDPE (linear low density polyethylene)
 - short, straight branch : low -pressure (100 psi)

Tm= 120 - 130 °C 54 - 63% crystallinity

- · HDPE (high density PE)
 - no branches, linear : made by low pressure process δ =0.97 g/cm³ 64 -80% crystallinity
 - more tightly packed in the crystalline than in the amorphous areas. e.g.) iso -PP: crystalline, hard and rigid plastics.
- crystalline polymers have two-phase systems with a crystalline phase dispersed in an amorphous matrix - mostly opague.
- · In general, transparent polymers are completely amorphous.
 - 5.5 Determination of Crystallinity
 - 1. density measurement

$$\phi_{c} = \frac{\rho - \rho_{a}}{\rho_{c} - \rho_{a}}$$

(volume fraction of material in the crystalline state)

- ρ : density of the sample
- ρ_a: density of amorphous polymer
- ρ_c : density of crystalline polymer X ray unit cell dimension.

$$\omega_{c} = \frac{\rho_{c}(\rho - \rho_{a})}{\rho(\rho_{c} - \rho_{a})}$$

2. Specific heat (cal/g.°c)

$$\chi = \frac{c_a - c}{c_a - c_c}$$

3. melting enthalpy (enthalpy of fusion)

$$\chi = \frac{\Delta H}{\Delta H_f}$$

4. IR

$$\chi = \frac{\varepsilon_{\lambda}}{\varepsilon_{\lambda_c}}$$

e.g.)P.E : 7.67µm amorphous.

5. NMR

Broad band : crystalline regions Sharp band : amorphous regions

6. X - ray

$$\chi = \frac{I_c}{I_c + I_a}$$

Ic= integrating the intensities of crystalline reflections.

. Rate of crystallization

- rate of crystallization is maximum between Tg and Tm of the polymer.
- . Secondary crystallization

quenching of specimen at melt temperature and then store at temp. higher than Tg

 \rightarrow the disordered regions will mobile enough to rearrangement into lower energy, more ordered structure.

5.6 Extended - chain crystals

. fibrillar structure – polymers crystallized from a melt while subjected to extensional flow (eztended – chain crystals)


```
5.8 spherulties (
```

)

. polycrystal single crystal . – spherulites are aggregates of lamellar crystallites.

```
)
i) grow radially from a point of nucleation.
ii)nuclei가 sphrulite 가 . Shock cooling →
smaller spherulites.
iii) 0.01mm(diameter) - "Maltese Cross"
```

iv)semicrystalline polymer

