Chapter 10. Petroleums from Methane

- Three major sources in petrochemical industry:
 - (1) carbon monoxide and hydrogen (synthesis gas) from reforming natural gas (methane)
 - (2) olefins from pyrolysis of ethane, propane-butane(LPG) or distillates.
 - (3) aromatics from catalytic reforming.
- (1) Synthesis gas a general term used to designate various mixture of carbon monoxide and hydrogen.
- (i) partial oxidation of methane

$$2CH_4 + O_2 \longrightarrow 2CO + 4H_2 - \triangle H$$

Temp: 1,300~1,500 ℃

Press: 200 ~ 20,000 psig

non - catalytic process

(ii) steam reforming of methane

$$2CH_4 + O_2 \longrightarrow 3H_2 + CO$$
, $\triangle H_{800 \, C} = 54.2 \text{ kcal}$

Chemicals from synthesis gas

(i) Ammonia - the parent compound of many chemicals, especially

used as fertilizers.

Direct synthesis of ammonia from hydrogen and atmospheric

nitrogen is a classic heterogeneous catalytic reaction.

$$N_2(g) + 3H_2(g) \iff 2NH_3(g), \triangle H_{25 \text{ °C}} = -22.08 \text{ kcal}$$

: iron oxide (Fe₃O₄)

(ii) Urea - a byproduct from ammonia production/carbon dioxide

reacts with ammonia to produce urea. Urea is an important solid

fertilizer containing about 45% nitrogen.

(a) fertilizer: 75%

(b) animal feeds: 10%

(c) adhesives, plastics, and resins: 15%

two - step reaction of carbon dioxide and ammonia.

()first step : $CO_2 + NH_3 (g) \Leftrightarrow NH_2COONH_4(S)$

- ammonium carbamate is formed by an exothermic reaction.

Press = 150 atm

() Second step:

$$NH_2COONH_4(S) \iff NH_2CONH_2(s) + H_2O(g)$$

$$\triangle H_{25 C} = 6.32 \text{ kcal}$$

- The decomposition of the carbamate to urea and water at 200 °C
- () Nitric acid produced by oxidizing ammonia with air.

: Platinum - rhodium wire gauze.

(i)
$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$$

$$\triangle H_{25 C} = -21 \text{ kcal}$$

(ii)
$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

$$\triangle H_{25 C} = -27 \text{ kcal}$$

(iii) 3 NO₂ (g)+ H₂O(l)
$$\longrightarrow$$
 2HNO₃(aq) + NO(g)
 \triangle H_{25 °C} = -32 kcal

Press =

() Hydrozine (NH₂-NH₂) - ammonia is oxidized using sodium hypochloride to produce chloramines, NH₂CI, which further react with ammonia to produce hydrazine.

$$2NH_3 + H_2O_2 \longrightarrow NH_2 - NH_2 + NaCl + H_2O$$

Hydrozine can also be produces from ammonia and hydrogen peroxide as the oxidizing agent.

$$2NH_3 + H_2O_2 \longrightarrow NH_2 - NH_2 + 2H_2O$$

() a rocket fuel, amino cresols, pesticide,

- (2) Methanol
- Production : $2H_2 + CO$ → CH_3OH $\triangle H_{298} = -30.6$ (kcal/mol)
- (a) High temp process:

$$(T = 400 \, C, P = 4000 \sim 6500 \, psig)$$

: Zinc -Chrominum oxide (Zn -CrO₃)

(b) Low temp process

Methanol

- products
- (i) Formaldehyde: produced by the catalyzed oxidation of methanol, and by the non-catalytic oxidation of propane butane mixtures.

() CH₃OH
$$\longrightarrow$$
 HCHO + H₂

$$\triangle H_{298} ° = 20.4 \text{ kcal}$$

$$2H_2 + O2 \longrightarrow 2H_2O$$

$$\triangle H_{298} ° = -57.8 \text{ kcal}$$

Formaldehyde is usually sold as a 37% solution in water with methanol as a stabilizer. Because formaldehyde tends to polymerize in concentrated solution and in the absence of a solvent.

- (ii) Acetic Acid
- () (a) oxidation of acetaldehyde
 - (b) oxidation of n-butane
 - (c) carbonylation of methanol

CH₃OH + CO
$$\longrightarrow$$
 CH₃COOH (Monsanto process)
(T=200 °C, P= 215 psig)

: Rhodium iodide complex

(iii) Methyl Chloride

() CH3OH + HCI
$$\longrightarrow$$
 CH₃CI + H₂O

- (a)Reaction between methanol and hydrogen chloride (vapor phase)
- (b)Or chlorination of methane
- (iv) Methyl amines: from methanol and ammonia

$$CH_3OH + NH_3 \longrightarrow CH_3NH_3 + H_2O$$

$$CH_3OH + CH_3NH_3 \longrightarrow (CH_3)_2NH_3 + H_2O$$

$$CH_3OH + (CH_3)_2NH \longrightarrow (CH_3)_3N + H_2O$$

(mol%),MMA: DMA: TMA=43:24:33

MMA =

DMA = most widely needed,

TMA=フト ()

- (v) Methyl Methacrylate:
 - (a) starts with hydrogen cyanide and aceton in the presence of a base.

(b) with sulfuric acid, this becomes the sulfuric acid salt of the amide of methacrylic acid.

$$CH_3COCH_3 + HCN \xrightarrow{-OH} H_3C \xrightarrow{CH_3} C$$

(c) The amide salt is esterified by methanol to give methyl methacrylate.

$$H_2C = C - C - C - NH_3^+ HSO_4^- + CH3OH$$
 \longrightarrow 2HC $= C - C - C - C - CH_3 + NH_4 HSO_4$ $= CH_3 - CH_3 -$

- (vi) Dimethyl Terephtalate (DMT)
- -Methanol is used for the esterification of terephthalic acid to dimethyl terephtalate transesterified with ethylene glycol to make polyester fibers.

(a)

(b)

$$CH_3OOC$$
 $COOCH_3 + nHOCH_2 - CH_2OH$
 $COOCH_3 + nHOCH_2 - CH_2OH$

Poly(ethylene terephthalate) (PET) Fiber.

(3) Chloromethanes

-Methyl chloride, Chloromethane CH₃Cl: 58.7%

Methylene Chloride, dichloromethane CH₂Cl₂: 29.3%

Chloroform, trichloromethane CHCl₃, 9.7%

-Carbon tetrachloride, tetrachloromethane CCl₄: 2.3%

() Chlorination of methane thermal chlorination - important photochemical chlorination

- () Nonflammability : chlorofluorocarbon (CFC)
 polyurethane foam blowing agent (ex: HCFC 141B)
 slvent, paint stripping, etc.
- Chloform

- Carbon Tetrachloride
- used for the production of trichlorofluoromethane (CCI $_3$ F,

Fluorocarbon)

- and dichlorodifluoromethane

(CCI2F2, Fluorcarbon 12)

()
$$CCI_4 + HF \longrightarrow CCI_3F + HCI$$

 $CCI_4 + 2HF \qquad CCI_2F_2 + 2HCI$

- () aerosol product : colognes, perfume hair spray, shave cream
 - Air conditioning,. Refrigeration ()
- · Carbon disulfide

$$CH_4 + S \longrightarrow CS2 + 2H_2S (1^{st} step)$$

 $3H_2S + 3/2O_2 \longrightarrow 3H_2O + S (2^{nd} step)$
 $CH_4 + 2S + O_2 \longrightarrow CS_2 + 2H_2O (net process)$

Also produced by carbon and sulfur.

- () production of CCl₄
 - rayon and cellophane
 - regenerated cellulose
- Hydrogen Cyanide

$$2CH_4 + 2NH_3 + 3O_2 \longrightarrow 2HCN + 6H_2O$$

() in the production of methyl methacrylate, acrylonitrile, etc Also, $CH_4 + NH_3 \longrightarrow HCN + 3H_2$

(Degussa process)