Chapter 4. Fundamentals of Material Balances (Part 2)

> 고려대학교 화공생명공학과

4.4 Balances on Multiple-Unit Processes

- Industrial processes rarely involve just one unit.
- Keeping track of material flows for overall processes
- Keeping track of material flow of all individual units
- Definition of system : arbitrary choice
- Recommended solving method Overall Balances → Balances on Subsystems

Example : An Extraction-Distillation Process

What is an extraction process ? - Use of distribution between immiscible phases What is a distillation process ? - Use of boiling point differences Acetone + Water) mixture separation - Cannot be separated simply by a distillation » Forming azeotrope - Use MIKB (methyl isobutyl ketone) to extract acetone

Flow chart

Example 4.4-2) Continues

Problem bookkeeping

- Degree of freedom analysis
 - » For overall mass balance
 - **Unknown : 4 variables (B**_A,**B**_M,**B**_W and **V)**
 - Equations : 3 (= number of components)
 - Cannot be solved
 - » Mass balance for given rectangular box
 - **Unknown : 3 variables** $(E_A, E_M \text{ and } E_W)$
 - Equation : 3 (=number of components)

– Strategy

- » Balances around E1 + E2 \rightarrow E_A, E_M, E_W
- » Balances around mixing point \rightarrow E1, E2, X_M
- » Balances around E1 (or E2) $\rightarrow R_A, R_M, R_W$
- » Distillation column \rightarrow Cannot be solved.
 - One more specification is required.

4.5 Recycle and Bypass

Reasons for Recycle

- Recovering and reusing unconsumed reactants
- Recovery of catalyst (catalyst : expensive)
- Dilution of process stream
- Control of process variables
- Circulation of working fluid

 $A + B \rightarrow C$

- A fraction of the feed is diverted around the process unit and combined with the output stream.
- Controlling properties and compositions of product stream

4.6 Balances on Reactive Systems

Stoichiometry (양론식)

 The theory of proportions in which chemical species combine with one another.

- Example) $2SO_2 + O_2 \rightarrow 2SO_3$

Stoichiometric coefficients

- Stoichiometric Ratio (양론비):

- Ratio of stoichiometric coefficients
- Example

 $\frac{2 \text{ mol SO}_3 \text{ produced}}{1 \text{ mol O}_2 \text{ reacted}}$

 $\frac{2 \text{ mol SO}_2 \text{ reacted}}{2 \text{ mol SO}_3 \text{ produced}}$

Limiting reactants (한정 반응물) Exist less than stoichiometric proportion ■ Excess reactants (과잉 반응물) Exist more than stoichiometric proportion **Example** $2SO_2 + O_2 \rightarrow 2SO_3$ (30 mol) (10 mol)

Limiting

Excess

Fractional excess Percent excess - n_s: 양론비에 해당하는 몰수 **Example** $-H_2 + Br_2 \rightarrow HBr$ - H₂ : 25 mol /hr - Br₂ : 20 mol /hr - Fractional Excess $H_2 = (25 - 20)/20 = 0.25$

$$\frac{n-n_s}{n_s} \times 100$$

Extent of reaction (반응 진행도)

 $n_{i} = n_{i0} + \beta_{i}\xi$ where $\beta_{i} = V_{i} \quad \text{(products)}$ $\beta_{i} = V_{i} \quad \text{(reactants)}$ $\xi : \text{extent of reaction}$

Final N₂ + 3H₂ \rightarrow 2NH₃ N₂ :100 mol , H₂ : 300 mol $n_{N_2} = 100 \text{ mol} - \xi$ $n_{H_2} = 300 \text{ mol} - 3\xi$ $n_{NH_3} = 2\xi$

Chemical Reaction

What is final composition ?

- Chemical equilibrium thermodynamics

$$K = \prod \hat{f}_i^{v_i}$$
$$K = \prod a_i^{v_i}$$
$$\frac{d \ln K}{dT} = \frac{\Delta H_r}{RT}$$

How long it will take to reach equilibrium ?
 Chemical kinetics

 $r_{i} = k(T) f (composition)$ $= k_{o} T^{m} e^{-E/RT} C_{A}^{n} C_{b}^{l} \dots$

Example 4.6-1)

 Acetonitrile is produced by the reaction of propylene, ammonia and oxygen.
 C₃H₆ + NH₃ + 3/2 O₂ → C₃H₃N + 3H₂O

The feed contains 10 mol % propylene, 12 % ammonia and 78 % air. A fractional conversion of 30 % of the limiting reactant is achieved. Determine which reactant is limiting, the percentage by which each of the reactants is in excess, and the molar flow rates of all product gas constituents for a 30 % conversion of the limiting reactants, taking 100 mol of feed as basis.

Solution

Basis, 100 mol feed

Solution

Percent Exess

 $(NH_3)_{STOICH} = 10.0 mol$ $(O_2)_{STOICH} = 15.0 mol$ % Excess $NH_3 = (12 - 10) / 10 \times 100 = 20\%$ % Excess $O_2 = (16.4 - 15)/15 \times 100 = 9.3\%$ Fractional concersion = 30% $\xi = 100 \text{mol} \times 0.3 = 3 \text{mol}$ $n_{C_{3}H_{6}} = 10mol - \xi = 7.0mol$ $n_{_{NH_3}} = 12mol - \xi = 9.0mol$ $n_{O_2} = 16.4 mol - 1.5 \xi = 11.9 mol$ $n_{N_2} = (n_{N_2})_0 = 61.6mol$ $n_{C_3H_3N} = \xi = 3mol$

Multiple Reaction, Yield, Selectivity

Multiple reaction : one or more reaction - Side Reaction : undesired reaction - Example) Production of ethylene $C_2H_6 \rightarrow C_2H_4 + H_2$ (Side Reactions) $C_2H_6 + H_2 \rightarrow 2CH_4$ $C_2H_4 + C_2H_6 \rightarrow C_3H_6 + CH_4$ – Design Objective » Maximize desired products (C_2H_4) » Minimize undesired products (CH₄, C₃H₆)

Multiple Reaction, Yield, Selectivity

■ Yield (수율)

(moles of desired product formed) (moles of desired products, theoretical) Selectivity (선택도) (moles of desired product formed)

(moles of undesired product formed)

Multiple Reaction, Yield, Selectivity

Calculation of molar flow rates for multiple reactions

> $n_{i} = n_{i0} + \sum_{j} \beta_{ij} \xi_{j}$ $\beta_{ij} = v_{ij} \text{ (if } A_{i} \text{ is a product in reaction } j\text{)}$ $\beta_{ij} = -v_{ij} \text{ (if } A_{i} \text{ is a reactant in reaction } j\text{)}$ $\beta_{ij} = 0 \text{ (if } A_{i} \text{ does not appear in reaction } j$

Balances of Atomic and Molecular Species

- Methods for solving mass balances with reactions
 - Using balances on molecular species
 - Using balances of atoms
 - Using the extent of reaction
- For multiple reactions, sometimes it is more convenient to use atomic balances

Product separation and recycle

Normally, reactions are not complete

- Separation and recycle
- Improved yield, conversion ,...

Overall conversion (총괄 전화율)
 Single-pass conversion (단통과 전화율)

Getting rid of undesired materials in recycle stream.

4.7 Combustion Reaction

Combustion

A rapid reaction of a fuel with oxygen.
Fuels : coal, fuel oil, gas fuel, solid fuel, ...
Complete combustion / incomplete combustion
Wet basis composition / dry basis composition

Theoretical oxygen : Amount of oxygen needed for complete combustion
Theoretical air : The quantity of air that contains theoretical oxygen
Excess air : The amount by which the air fed to reactor exceeds the theoretical air

Percent excess air

 $\frac{(\text{moles air})_{\text{fed}} - (\text{moles air})_{\text{theoretical}}}{(\text{moles air})_{\text{theoretical}}} \times 100\%$