Chapter 8. Balances on Nonreactive Processes

\* Topics

- Method of evaluating  $\Delta H$  and  $\Delta U$
- Solving energy balances

8.1 State properties and hypothetical process paths

- \* State property depends only on the initial and final condition, not on the path
- \* Advantage of using state property
  - Hypothetical process path can be used for the calculation of true process.

Example) Ice, -5 degree C, 1 atm  $\rightarrow$  Vapor 300 deg. C, 5 atm



$$\Delta \widehat{H} = \sum_{i=1}^{6} \widehat{H}_{i}$$

8.2 Changes in P at const. T

- \* Solid and Liquid
  - U is nearly independent of P
  - $\Delta U \approx 0, \Delta H \approx V \Delta P$

\* Gases

-U and H are nearly independent of P for ideal gases.

- 
$$\Delta U \approx 0, \Delta H \approx 0$$
 for low pressure (nearly ideal gas)

- \* For real gases,
  - Tabulated H data
  - Thermodynamic relation (from EOS or other methods)
- 8.3 Changes in T

8.3a Sensible Heat and Heat Capacities

 \* Sensible Heat ( ) – Heat required to raise temperature of a substance from 1<sup>st</sup> law of thermodynamics,

> $Q = \Delta U$  for closed system  $Q = \Delta H$  for open system

\* Heat capacity at constant volume

$$C_{v} = \left\{ \lim_{\Delta T \to 0} \frac{d\hat{U}}{dT} \right\} = \frac{d\hat{U}}{dT} = \left( \frac{\partial U}{\partial T} \right)_{v}$$
$$\Delta U = \int_{T_{1}}^{T_{2}} C_{v} dT$$

- Ideal gas : exact
- Solid or liquid : good approximation
- Real gas : valid only if V is constant

\* Heat capacity at constant pressure

$$C_{p} = \left\{ \lim_{\Delta T \to 0} \frac{d\hat{H}}{dT} \right\} = \frac{d\hat{H}}{dT} = \left( \frac{\partial H}{\partial T} \right)_{p}$$

$$\Delta H = \int_{T_1}^{T_2} C_p dT$$

- Ideal gas : exact
- Real gas : valid only if P is constant

$$\Delta H = \int_{T_1}^{T_2} C_p dT + \hat{V} \Delta P$$

- Solid or liquid : good approximation
- 8.3b Heat Capacity Formulas and Meat Heat Capacities
- \* Data for heat capacities

$$C_p = a + bT + cT^2 + dT^3$$

values of a,b,c,d are tabulated

- Perry s Handbook
- 'Properties of Gases and Liquid "
- \* Simple Relationship

For liquids and solids ,  $~C_{_p}\approx C_{_{\!\!\mathcal{V}}}$ 

For ideal gases ,  $C_p = C_v + R$ 

\* Mean Heat Capacity

$$\overline{C}_{p} = \frac{\hat{H}_{2} - \hat{H}_{1}}{T_{2} - T_{1}} = \frac{\int_{T_{1}}^{T_{2}} C_{p}(T) dT}{T_{2} - T_{1}}$$
$$\Delta \hat{H} = \overline{C}_{p} \Delta T$$

Integration is replaced by simple multiplication

$$\Delta \hat{H}(T_2 \rightarrow T_1) = (\overline{C}_p)_{T_s}(T_2 - T_{ref}) - (\overline{C}_p)_{T_1}(T_1 - T_{ref})$$

(this equation is valid because H is state property)

### 8.3c Estimation of Heat Capacities

- Estimation Techniques when there are no data for Cp

- \* Kopp's Rule
  - Group Contribution method
- \* Other sources
  - Perry's Handbook
  - Properties of Gases and Liquids
- \* Enthalpy change of mixtures
  - Rule 1 : assume additivity

$$C_{pm} = \sum y_i C_{pi}(T)$$

$$\Delta H_m = \int_{T_1}^{T_2} C_{pm} dT$$

Rule 2 : For dilute solution, neglect enthalpy change of the solute.

- 8.3 d Energy Balance for Single Phase Systems
- Input -Output enthalpy table : Sometimes efficient for complex systems.

#### 8.4 Phase Change Operation

- Heat duties of phase changes are substantial.
- Latent Heats

Latent Heat of Vaporization  $\Delta \overline{H}_{v}$ : Liquid -Vapor Transition

Latent Heat of Fusion  $\Delta \overline{H}_{f}$ : Solid -Liquid Transition

Latent Heat of Sublimation  $\Delta \overline{H}_s$  : Solid -Vapor Transition

- Principles can be also extended to solid -solid phase changes.

8.4a Latent Heats

- Latent Heat : heat required for a given phase change at fixed T (or P).
   for pure component, F = 1.
   Specifiying T or P is enough
- Standard heat phase change : Latent heat at 1 atm. (Appendix B.1)
- For closed systems,

$$Q = m\Delta U$$

For liquids and solids,  $\Delta \overline{U}_m \approx \Delta \overline{H}_m$ 

For gases,  $\Delta \overline{U}_m = \Delta \overline{H}_m - \Delta (PV) \approx \Delta \overline{H}_m - RT$ 

8.4b Estimation and Correlation of Latent Heats

- See Perry's Handbook or "Properties of Gases and Liquids"

- Trouton's Rule : Accuracy (+ - 30 %)

 $\Delta \hat{H}_v = 0.088T_h(K)$ , Nonpolar liquids

 $\Delta \hat{H}_{v} = 0.109T_{h}(K)$ , Water, low m.w. alcohols

- Chen's Equation : Accuracy (+ - 2%)

$$\Delta \hat{H}_{v}(kJ/mol) = \frac{T_{b} \left[ 0.0331(T_{b}/T_{c}) - 0.0327 + 0.0297 \log_{10} P_{c} \right]}{1.07 - (T_{b}/T_{c})}$$

- Estimation Equation of Heat of Fusion

$$\Delta \hat{H}_m(kJ/mol) = 0.0092T_m(K), \text{ Metallic elements}$$
  
$$\Delta \hat{H}_m(kJ/mol) = 0.025T_m(K), \text{ Inorganic compounds}$$
  
$$\Delta \hat{H}_m(kJ/mol) = 0.050T_m(K), \text{ Organic compounds}$$

- Estimation of heat of vaporization from vapor pressure data

$$\frac{d(\ln p^*)}{d(1/T)} = \frac{\Delta \hat{H}_v}{R}$$
plot of ln p\* vs. 1/T  $\rightarrow$  slope =  $\frac{\Delta \hat{H}_v}{R}$ 

- Watson correlation : heat of vaporization for other temperature

$$\Delta \hat{H}_{v}(T_{2}) = \Delta \hat{H}_{v}(T_{1}) \left[ \frac{T_{c} - T_{2}}{T_{c} - T_{1}} \right]^{0.38}$$

# 8.4c Energy Balances Involving Phase Changes

→ See example 8.4 -4

## 8.4d Psychrometic charts

- Psychrometric chart : plot of several properties of a gas -vapor mixture Air – Water system at 1 atm : Figure 8.4 -1
- Wet bulb and dry bulb temperature

Dry bulb temperature : normal temperature Wet bulb temperature : measure of saturation of the given liquid (water)

- How to read psychrometric chart ?

F = 2 + 2 - 1 = 3P : 1 atm for pychrometric chart Other 2 varibles : Tdb and Twb T db or hr , ....

H : add enthalpy deviation to the H at saturation

- See example 8.4 -5 for reading the psychrometric chart
- 8.4e Adiabatic Humidification
- \* Adiabatic humidification
  - evaporation of a liquid into gas -liquid mixture
  - latent heat required to evaporate liquid is provided by the sensible
  - heat lost by the gas phase.
- \* Adiabatic humidification
  - drying of solid product
  - production of humid air

\* For air -water system, adiabatic saturation curve coincide with the constant wet -bulb temperature line.\_

## 8.5 Mixing and Solution

\* Heat of Mixing

$$H = \sum x_i H_i + \Delta H_{mix}$$

- Heat effect accompanied by mixing of two different species
- $\Delta H_{mix} \approx 0$  for hydrocarbons and simple molecules. But for some mixtures heats of mixing are substantial.
- 8.5a Heat of Solution and Mixing
- \* Integral Heat of Solution  $\Delta \hat{H}_{s}(T,n)$ :

Enthalpy for process when 1 mol of solute is dissolved in n moles of liquid solvent at const. T

\* Heat of solution at infinite dilution

: 
$$\Delta \hat{H}_{s}(T, n \to \infty)$$

\* Calculation of Enthalpy

 $\Delta H = n \Delta \hat{H}_s$ : n is the moles of solvent at the given conc.

\* Two reference state

i) Based on pure solvent and solute

$$\hat{H}_{ref} = \Delta \hat{H}_s(n)$$

ii) Based on pure solvent and infinite dilution solution

(1mol HCl,  $10^6$  mol H2O)  $\rightarrow$  (1 mol HCl, 10 mol water) + (( $10^6 - 10$ ) mol water)

$$\Delta \hat{H}_{s}(\infty)$$
  $\Delta \hat{H}_{s}(n)$  0

$$\hat{H}_{ref} = \Delta \hat{H}_s(n) - \Delta \hat{H}_s(\infty)$$

\* Note enthalpies are expressed per solute not moles of solution.

8.5b Balances on Dissolution and Mixing Process

- \* Prepare enthalpy table for each streams.
- \* Use  $n_i \hat{H}_i$  values
- \* Calculate enthalpies based on 25 deg.C values.